

    
      
          
            
  
CompuCell3D Reference Manual - 4.3.0

The focus of this manual is to teach you how to use CC3DML (XML-based syntax) to build powerful multi-scale
multi-cell tissue simulations. We will assume that you have a working knowledge of XML.
You do not have to be an XML guru but you should know how to write simple XML documents.
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Introduction to CompuCell3D Modules CC3DML Syntax

This CompuCell3D reference material provides users with fairly detailed
description of CC3DML syntax (CC3DML is XML-based model description
format) of CC3D modules. The presented material is intended for users
who are already familiar with CompuCell3D basics and know how to build
and run simple simulations such as cell-sorting, bacterium macrophage or
cell-type-oscillator. Since we often show CC3DML syntax and accompanying
Python syntax for CC3D scripting we assume that users are familiar with
Python. For readers who are using CompuCell3D for the first time we
strongly recommend reading “Introduction To CompuCell3D”. Complete
description of CC3D Python scripting can be found in “CC3D Python
Scripting Manual”. Both manuals are available from
www.compucell3d.org [http://www.compucell3d.org] or at your nearest
bookstore.




          

      

      

    

  

    
      
          
            
  
Potts and Lattice


	Potts Section


	Lattice Type





Potts Section

The first section of the .xml file defines the global parameters of the
lattice and the simulation.

<Potts>
    <Dimensions x="101" y="101" z="1"/>
    <Anneal>0</Anneal>
    <Steps>1000</Steps>
    <FluctuationAmplitude>5</FluctuationAmplitude>
    <Flip2DimRatio>1</Flip2DimRatio>
    <Boundary_y>Periodic</Boundary_y>
    <Boundary_x>Periodic</Boundary_x>
    <NeighborOrder>2</NeighborOrder>
    <DebugOutputFrequency>20</DebugOutputFrequency>
    <RandomSeed>167473</RandomSeed>
    <EnergyFunctionCalculator Type="Statistics">
        <OutputFileName Frequency="10">statData.txt</OutputFileName>
        <OutputCoreFileNameSpinFlips Frequency="1" GatherResults="" OutputAccepted="" OutputRejected="" OutputTotal=""/>
    </EnergyFunctionCalculator>
</Potts>





This section appears at the beginning of the configuration file. Line
<Dimensions x="101" y="101" z="1"/> declares the dimensions of the
lattice to be``101 x 101 x 1``, i.e., the lattice is two-dimensional and
extends in the xy plane. The basis of the lattice is 0 in each
direction, so the 101 lattice sites in the x and y directions have
indices ranging from 0 to 100. <Steps>1000</Steps> tells CompuCell how
long the simulation lasts in MCS. After executing this number of steps,
CompuCell can run simulation at zero temperature for an additional
period. In our case it will run for <Anneal>10</Anneal> extra steps.
FluctuationAmplitude parameter determines intrinsic fluctuation or
motility of cell membrane.


Note

FluctuationAmplitude is a Temperature
parameter in classical GGH model formulation. We have decided to use
FluctuationAmplitude term instead of temperature because using word
Temperature to describe intrinsic motility of cell membrane was quite
confusing.
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Plugins Section

In this section we overview CC3DML syntax for all the plugins available
in CompuCell3D. Plugins are either energy functions, lattice monitors or
store user assigned data that CompuCell3D uses internally to configure
simulation before it is run.


	CellType Plugin


	Global Volume and Surface Constraints


	VolumeTracker and SurfaceTracker plugins


	VolumeFlex Plugin


	NeighborTracker Plugin


	Chemotaxis


	ExternalPotential Plugin


	CenterOfMass Plugin


	Contact Plugin


	AdhesionFlex Plugin


	Compartmentalized cells. ContactInternal Plugin


	LengthConstraint Plugin


	Connectivity Plugins


	Secretion / SecretionLocalFlex Plugin


	PDESolverCaller Plugin


	FocalPointPlasticity Plugin


	Curvature Plugin


	BoundaryPixelTracker Plugin


	MomentOfInertia Plugin


	ConvergentExtension plugin





CellType Plugin

An example of the plugin that stores user assigned data that is used to
configure simulation before it is run is a CellType Plugin. This plugin
is responsible for defining cell types and storing cell type
information. It is a basic plugin used by virtually every CompuCell
simulation. The syntax is straight forward as can be seen in the example
below:

<Plugin Name="CellType">
  <CellType TypeName="Medium" TypeId="0"/>
  <CellType TypeName="Fluid" TypeId="1"/>
  <CellType TypeName="Wall" TypeId="2" Freeze=""/>
</Plugin>





Here we have defined three cell types that will be present in the
simulation: Medium, Fluid, Wall. Notice that we assign a number – TypeId
– to every cell type. It is strongly recommended that TypeId’s are
consecutive positive integers (e.g. 0,1,2,3...). Medium is traditionally
given TypeId=0 and we recommend that you keep this convention.


Note

Important: Every CC3D simulation must define CellType Plugin and
include at least Medium specification.
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Steppable Section

Steppables are CompuCell modules that are called every Monte Carlo Step
(MCS). More precisely, they are called after all the pixel copy attempts
in a given MCS have been carried out. Steppables may have various
functions - for example solving PDEs, checking if critical
concentration threshold have been reached, updating target volume or
target surface given the concentration of come growth factor,
initializing cell field, writing numerical results to a file, etc… In
general, steppables perform all functions that need to be done every
MCS. In the reminder of this section we will present steppables
currently available in the CompuCell3D and describe their usage.


Tip

It is most convenient to implement Steppables in Python. However, in certain situations
where code performance is an issue users can implement steppables in C++
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PDESolvers in CompuCell3D

One of the most important and time consuming parts of the CC3D
simulation is to solve all sorts of Partial Differential Equations which
describe behavior of certain simulation objects (usually chemical
fields). Most of the CC3D PDE solvers solve PDE with diffusive terms.
Because we are dealing with moving boundary condition problems it was
easiest and probably most practical to use explicit scheme of Finite
Difference method. Most of CC3D PDE solvers run on multi core
architectures and we also have GPU solvers which run and high
performance GPU’s and they also provide biggest speedups in terms of
performance. Because CC3D solvers were implemented at different CC3D
life cycle and often in response to particular user requests, CC3DML
specification may differ from solver to solver. However, the basic
structure of CC3DML PDE solver code follows similar pattern .


	FlexibleDiffusionSolver


	Instabilities of the Forward Euler Method


	DiffusionSolverFE


	AdvectionDiffusionSolver.


	FastDiffusionSolver2D


	KernelDiffusionSolver


	ReactionDiffusionSolver


	Steady State diffusion solver


	Fluctuation Compensator Solver Add-On





FlexibleDiffusionSolver

This steppable is one of the basic and most important modules in
CompuCell3D simulations.


Tip

Starting from version 3.6.2 we developed DiffusionSolverFE
which eliminates several inconveniences of FlexibleDiffusionSolver.
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Appendix

This section covers some of the computational algorithms we use in CC3D


	Calculating Inertia tensor In CC3D


	Calculating shape constraint of a cell – elongation term


	Forward Euler method for solving PDE’s in CompuCell3D.


	Calculating center of mass when using periodic boundary conditions.


	Dividing cluster cells


	Command line options of CompuCell3D


	Managing CompuCell3D simulations (CC3D project files)





Calculating Inertia tensor In CC3D

For each cell the inertia tensor is defined as follows:


\begin{eqnarray}

 I = \begin{bmatrix}
 \sum_i y_i^2+z_i^2 & -\sum_i x_i y_i & -\sum_i x_i z_i \\
 -\sum_i x_i y_i & \sum_i x_i^2+z_i^2 & -\sum_i y_i z_i \\
 -\sum_i x_i z_i & -\sum_i  y_i z_i & \sum_i x_i^2+y_i^2 \\
 \end{bmatrix}
\end{eqnarray}
where index \(i\) denotes i-th pixel of a given cell and \(x_i\),
\(y_i\) and \(z_i\) are coordinates of that pixel in a given
coordinate frame.

[image: inertia_tensor_fig3]

Figure 3: Cell and coordinate system passing through center of mass of a cell.
Notice that as cell changes shape the position of center of mass moves.

[image: inertia_tensor_fig4]

Figure 4: Cell and its coordinate frame in which we calculate inertia tensor

In Figure 4 we show one possible coordinate frame in which one can
calculate inertia tensor. If the coordinate frame is fixed calculating
components of inertia tensor for cell gaining or losing one pixel is
quite easy. We will be adding and subtracting terms like \(y_i^2+z_i^2\) or \(x_i z_i\).

However, in CompuCell3D we are mostly interested in knowing tensor of
inertia of a cell with respect to xyz coordinate frame with origin at
the center of mass (COM) of a given cell as shown in Figure 3. Now, to
calculate such tensor we cannot simply add or subtract terms \(y_i^2+z_i^2\) or \(x_i z_i\) to
account for lost or gained pixel. If a cell gains or loses a pixel its
COM coordinates change. If so then all the \(x_i\),:math:y_i, \(z_i\)
coordinates that appear in the inertia tensor
expression will have different values. Thus, for each change in cell shape
(gain or loss of pixel) we would have to recalculate inertia tensor from
scratch. This would be quite time consuming and would require us to keep
track of all the pixels belonging to a given cell. It turns out, however,
that there is a better way of keeping track of inertia tensor for cells.
We will be using parallel axis theorem to do the calculations. Parallel
axis theorem states that if \(I_{COM}\) is a moment of inertia with
respect to axis passing through center of mass then we can calculate
moment of inertia with respect to any parallel axis to the one passing
through the COM by using the following formula:


\begin{eqnarray}
     I_{x'x'} = I_{xx} + Md^2
\end{eqnarray}
where \(I_{xx}\) denotes moment of inertia with respect to x axis passing through
center of mass, \(I_{x'x'}\) is a moment of inertia with respect to some other axis parallel to
the x , d is the distance between the axes two and M is mass of the cell.

Let us now draw a picture of a cell gaining one pixel:

[image: inertia_tensor_fig5]

Figure 5: Cell gaining one pixel.d denotes a distance from origin of a fixed frame
of reference to a center of mass of a cell before cell gains new pixel.
\(d_{new}\) denotes same distance but after cell gains new pixel

Now using parallel axis theorem we can write expression for the moment
of inertia after cell gains one pixel the following that:


\begin{eqnarray}
     I_{xx}^{new} = I_{x'x'}^{new} - (V+1)d_{new}^2
\end{eqnarray}
where, as before, \(I_{xx}^{new}\) denotes moment of inertia of a cell with new pixel with
respect to x axis passing through center of mass, \(I_{x'x'}^{new}\) is a moment of
inertia with respect to axis parallel to the x axis passing through
center of mass, \(d_{new}\) is the distance between the axes and
\(V+1\) is volume of the cell after it gained one pixel. Now let us
rewrite above equation by adding ad subtracting \(Vd^2\) term:


\begin{eqnarray}
     I_{xx}^{new} = I_{x'x'}^{old} + y_{n+1}^2 + z_{n+1}^2 - Vd^2 + Vd^2 (V+1)d_{new}^2 \\
     = I_{x'x'}^{old} - Vd^2 + y_{n+1}^2 + z_{n+1}^2 + Vd^2 (V+1)d_{new}^2 \\
     I_{xx}^{old} - Vd^2 + y_{n+1}^2 + z_{n+1}^2 + Vd^2 (V+1)d_{new}^2
\end{eqnarray}
Therefore we have found an expression for moment of inertia passing
through the center of mass of the cell with additional pixel. Note that
this expression involves moment of inertia but for the old cell (i.e.
the original cell, not the one with extra pixel). When we add new pixel
we know its coordinates and we can also easily calculate \(d_new\) .
Thus,  when we need to calculate the moment of inertia for new cell
instead of performing summation as given in the definition of the
inertia tensor we can use much simpler expression.

This was diagonal term of the inertia tensor. What about off-diagonal
terms? Let us write explicitly expression for \(I_{xy}\) :


\begin{eqnarray}
     I_{xy} = -\sum_i^N (x_i-x_{com})(y_i-y_{com}) = -\sum_i^N x_i y_i + x_{COM}\sum_i^Ny_i + y_{COM}\sum_i^Nx_i - x_{COM}y_{COM}\sum_i^N \\
     =  -\sum_i^N x_i y_i + x_{COM}Vy_{COM} + y_{COM}Vx_{COM} - x_{COM}y_{COM} V \\
     = -\sum_i^N x_i y_i + V x_{COM}y_{COM}
\end{eqnarray}
where \(x_{COM}\), \(y_{COM}\) denote x and y center of mass positions of the cell,
\(V\) denotes cell volume. In the above formula we have used the fact that:


\begin{eqnarray}
   x_{COM} = \frac{\sum_i x_i}{V} \implies \sum_i x_i =  x_{COM} V
\end{eqnarray}
and similarly for the y coordinate.

Now, for the new cell with additional pixel we have the following
relation:


\begin{eqnarray}
   I_{xy}^{new} = - \sum_i^{N+1} x_i y_i + (V+1)x^{new}_{COM}y^{new}_{COM} \\
   = - \sum_i^{N} x_i y_i +  V x_{COM}y_{COM} -   x_{COM}Vy_{COM} + (V+1)x^{new}_{COM}y^{new}_{COM} - x_{N+1}y_{n+1} \\
   = I_{xy}^{old} - V x_{COM}y_{COM} + (V+1)x^{new}_{COM}y^{new}_{COM} - x_{N+1}y_{n+1}
\end{eqnarray}
where we have added and subtracted \(V x_{COM}y_{COM}\) to be able to form \(I_{xy}^{old}- \sum_i^{N} x_i y_i+ V x_{COM}y_{COM}\)
on the right hand side of the expression for \(I_{xy}^{new}\) . As it was the case for diagonal element,
calculating off-diagonal of the inertia tensor involves ::math`I_{xy}^{old}` and positions of
center of mass of the cell before and after gaining new pixel. All those
quantities are either known a priori (::math`I_{xy}^{old}`) or can be easily calculated
(center of mass position after gaining one pixel).

Therefore, we have shown how we can calculate tensor of inertia for a
given cell with respect to a coordinate frame with origin at cell’s
center of mass, without evaluating full sums. Such “local” calculations
greatly speed up simulations



Calculating shape constraint of a cell – elongation term

The shape of single cell immersed in medium and not subject to too
drastic surface or surface constraints will be spherical (circular in
2D). However in certain situation we may want to use cells which are
elongated along one of their body axes. To facilitate this we can place
constraint on principal lengths of cell. In 2D it is sufficient to
constrain one of the principal lengths of cell how ever in 3D we need
to constrain 2 out of 3 principal lengths. Our first task is to
diagonalize inertia tensor (i.e. find a coordinate frame transformation
which brings inertia tensor to a diagonal form)


Diagonalizing inertia tensor

We will consider here more difficult 3D case. The 2D case is described
in detail in M.Zajac, G.L.jones, J,A,Glazier “Simulating convergent
extension by way of anisotropic differential adhesion” Journal of
Theoretical Biology 222 (2003) 247–259.

In order to diagonalize inertia tensor we need to solve eigenvalue
equation:


\begin{eqnarray}
   det(I-\lambda) = 0
\end{eqnarray}
or in full form


\begin{eqnarray}

 0 = \begin{vmatrix}
 \sum_i y_i^2+z_i^2 - \lambda & -\sum_i x_i y_i & -\sum_i x_i z_i \\
 -\sum_i x_i y_i & \sum_i x_i^2+z_i^2 - \lambda & -\sum_i y_i z_i \\
 -\sum_i x_i z_i & -\sum_i  y_i z_i & \sum_i x_i^2+y_i^2 - \lambda \\
 \end{vmatrix} = \begin{vmatrix}
  I_{xx} - \lambda & I_{xy} & I_xz \\
  I_{xy}  & I_{yy} - \lambda & I_yz \\
  I_{xz}  & I_{yz} & I_zz - \lambda
   \end{vmatrix}
\end{eqnarray}
The eigenvalue equation will be in the form of 3rd order
polynomial. The roots of it are guaranteed to be real. The polynomial
itself can be found either by explicit derivation, using symbolic
calculation or simply in Wikipedia ( http://en.wikipedia.org/wiki/Eigenvalue_algorithm )

[image: eigenvalue_formula_wiki]

so in our case the eigenvalue equation takes the form:


\begin{eqnarray}
   -L^2+L^2(I_{xx}+I_{yy}+I_{zz})+L(I_{xy}^2+I_{yz}^2+I_{xz}^2-I_{xx}I_{yy}-I_{yy}I_{zz}-I_{xx}I_{zz}) \\
   +I_{xx}I_{yy}I_{zz} - I_{xx}I_{yz}^2 -I_{yy}I_{zz}^2 I_{zz}I_{xy}^2 + 2I_{xy}I_{yz}I_{zx}
\end{eqnarray}
This equation can be solved analytically, again we may use Wikipedia (
http://en.wikipedia.org/wiki/Cubic_function )

Now, the eigenvalues found that way are principal moments of inertia of
a cell. That is they are components of inertia tensor in a coordinate
frame rotated in such a way that off-diagonal elements of inertia tensor
are 0:


I = \begin{eqnarray}
   \begin{vmatrix}
     I_{xx} & 0 & 0 \\
     0 & I_{yy} & 0 \\
     0 & 0 & I_zz
   \end{vmatrix}
\end{eqnarray}
In our cell shape constraint we will want to obtain ellipsoidal cells.
Therefore the target tensor of inertia for the cell should be tensor if
inertia for ellipsoid:


I = \begin{eqnarray}
   \begin{vmatrix}
     \frac{1}{5}(b^2+c^2) & 0 & 0 \\
     0 & \frac{1}{5}(a^2+c^2) & 0 \\
     0 & 0 & \frac{1}{5}(a^2+b^2)
   \end{vmatrix}
\end{eqnarray}
where a, b, c are parameters describing the surface of an ellipsoid:


\begin{eqnarray}
   \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\end{eqnarray}
In other words a, b, c are half lengths of principal axes (they are
analogues of circle’s radius).

Now we can determine semi axes lengths in terms of principal moments of
inertia by inverting the following set of equations:


\begin{eqnarray}
  I_{xx} = \frac{1}{5}(b^2+c^2) \\
  I_{yy} = \frac{1}{5}(a^2+c^2) \\
  I_{zz} = \frac{1}{5}(a^2+b^2)
\end{eqnarray}
Once we have calculated semiaxes lengths in terms of moments of inertia
we can plug –in actual numbers for moment of inertia (the ones for
actual cell) and obtain lengths of semiexes. Next we apply quadratic
constraint on largest (semimajor) and smallest (seminimor axes). This is
what elongation plugin does.




Forward Euler method for solving PDE’s in CompuCell3D.


Note

We present more complete derivations of explicit finite
difference scheme for diffusion solver in “Introduction to Hexagonal
Lattices in CompuCell3D” (http://www.compucell3d.org/BinDoc/cc3d_binaries/Manuals/HexagonalLattice.pdf).
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AdhesionFlex Plugin

AdhesionFlex offers a very flexible way to define adhesion between cells. It
allows setting individual adhesivity properties for each cell. Users can
use either CC3DML syntax or Python scripting to initialize adhesion
molecule density for each cell. In addition, Medium can also carry its
own adhesion molecules. We use the following formula to calculate
adhesion energy in AdhesionFlex plugin:


\begin{eqnarray}
    E_{adhesion} = \sum_{i,j,neighbors} \left ( - \sum_{m,n}k_{mn}F\left ( N_{m}\left (i \right ), N_{n} \left( j \right ) \right ) \right )\left ( 1-\delta_{\sigma(i), \sigma(j)} \right )
\end{eqnarray}
where indexes i, j label pixels, \(- \sum_{m,n}k_{mn}F\left ( N_{m}\left (i \right ), N_{n} \left( j \right ) \right )\)
denotes contact energy between cell types \(\sigma(i)\) and \(\sigma(j)\) and indexes m , n
label adhesion molecules in cells composed of pixels i and j respectively. F
denotes user-defined function of \(N_m\) and \(N_n\).
Although this may look a bit complex, the basic idea is simple: each
cell has certain number of adhesion molecules on its surface. When cells touch
each other the resultant energy is simply a “product of interactions” of
adhesion molecules from one cell with adhesion molecules from another cell. The CC3DML
syntax for this plugin is given below:

<Plugin Name="AdhesionFlex">
    <AdhesionMolecule Molecule="NCad"/>
    <AdhesionMolecule Molecule="NCam"/>
    <AdhesionMolecule Molecule="Int"/>
    <AdhesionMoleculeDensity CellType="Cell1" Molecule="NCad" Density="6.1"/>
    <AdhesionMoleculeDensity CellType="Cell1" Molecule="NCam" Density="4.1"/>
    <AdhesionMoleculeDensity CellType="Cell1" Molecule="Int" Density="8.1"/>
    <AdhesionMoleculeDensity CellType="Medium" Molecule="Int" Density="3.1"/>
    <AdhesionMoleculeDensity CellType="Cell2" Molecule="NCad" Density="2.1"/>
    <AdhesionMoleculeDensity CellType="Cell2" Molecule="NCam" Density="3.1"/>

    <BindingFormula Name="Binary">
        <Formula> min(Molecule1,Molecule2)</Formula>
        <Variables>
            <AdhesionInteractionMatrix>
             <BindingParameter Molecule1="NCad" Molecule2="NCad">-1.0</BindingParameter>
             <BindingParameter Molecule1="NCam" Molecule2="NCam">2.0</BindingParameter>
             <BindingParameter Molecule1="NCad" Molecule2="NCam">-10.0</BindingParameter>
             <BindingParameter Molecule1="Int" Molecule2="Int">-10.0</BindingParameter>
            </AdhesionInteractionMatrix>
        </Variables>
    </BindingFormula>

    <NeighborOrder>2</NeighborOrder>
</Plugin>





\(k_{mn}\) matrix is specified within the AdhesionInteractionMatrix
tag – the elements are listed using BindingParameter tags. The
AdhesionMoleculeDensity tag specifies initial concentration of adhesion
molecules. Even if you are going to modify those from Python you are still required to specify the
names of adhesion molecules and associate them with appropriate cell
types. Failure to do so may result in simulation crash or undefined
behaviors. The user-defined function *F* is specified using Formula tag
where the arguments of the function are called Molecule1 and Molecule2 .
The syntax has to follow syntax of the muParser -
https://beltoforion.de/en/muparser/features.php#idDef1 .


Note

Using more complex formulas with muParser requires special CDATA syntax. Please check muParser for more details.
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AdvectionDiffusionSolver.


Note

This is an experimental module and was not fully curated.
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BlobInitializer Steppable

BlobInitializer steppable is used to lay out circular blob of cells on the lattice.

An example syntax where we create one circular region of cells in the lattice is presented below:

<Steppable Type="BlobInitializer">
   <Region>
     <Gap>0</Gap>
     <Width>5</Width>
     <Radius>40</Radius>
     <Center x="100" y="100" z="0"/>
     <Types>Condensing,NonCondensing</Types>
   </Region>
</Steppable>





Similarly as for the UniformFieldInitializer users can define many
regions each of which is a blob of a particular center point, radius and
list of cell types that will be assigned to cells forming the blob.
Listing types in the <Types> tag follows same rules as in the
UniformInitializer.


Note

Original (and deprecated) syntax of this plugin looks as follows:

<Steppable Type="BlobInitializer">
    <Gap>0</Gap>
    <Width>5</Width>
    <CellSortInit>yes</CellSortInit>
    <Radius>40</Radius>
</Steppable>





The blob is centered in the middle of th lattice and has radius given by
<Radius> parameter. All cells are initially squares (or cubes in 3D) where
<Width> determines the length of the cube or square side and <Gap>
determines space between squares or cubes. <CellSortInit> tag and value
yes is used to initialize cells randomly with type id being either 1 or
2 . Otherwise all cells will have type id 1. This can be easily modified
in Python .
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Calculating shape constraint of a cell – elongation term

The shape of single cell immersed in medium and not subject to too
drastic surface or surface constraints will be spherical (circular in
2D). However in certain situation we may want to use cells which are
elongated along one of their body axes. To facilitate this we can place
constraint on principal lengths of cell. In 2D it is sufficient to
constrain one of the principal lengths of cell how ever in 3D we need
to constrain 2 out of 3 principal lengths. Our first task is to
diagonalize inertia tensor (i.e. find a coordinate frame transformation
which brings inertia tensor to a diagonal form)


Diagonalizing inertia tensor

We will consider here more difficult 3D case. The 2D case is described
in detail in M.Zajac, G.L.jones, J,A,Glazier “Simulating convergent
extension by way of anisotropic differential adhesion” Journal of
Theoretical Biology 222 (2003) 247–259.

In order to diagonalize inertia tensor we need to solve eigenvalue
equation:


\begin{eqnarray}
   det(I-\lambda) = 0
\end{eqnarray}
or in full form


\begin{eqnarray}

 0 = \begin{vmatrix}
 \sum_i y_i^2+z_i^2 - \lambda & -\sum_i x_i y_i & -\sum_i x_i z_i \\
 -\sum_i x_i y_i & \sum_i x_i^2+z_i^2 - \lambda & -\sum_i y_i z_i \\
 -\sum_i x_i z_i & -\sum_i  y_i z_i & \sum_i x_i^2+y_i^2 - \lambda \\
 \end{vmatrix} = \begin{vmatrix}
  I_{xx} - \lambda & I_{xy} & I_xz \\
  I_{xy}  & I_{yy} - \lambda & I_yz \\
  I_{xz}  & I_{yz} & I_zz - \lambda
   \end{vmatrix}
\end{eqnarray}
The eigenvalue equation will be in the form of 3rd order
polynomial. The roots of it are guaranteed to be real. The polynomial
itself can be found either by explicit derivation, using symbolic
calculation or simply in Wikipedia ( http://en.wikipedia.org/wiki/Eigenvalue_algorithm )

[image: eigenvalue_formula_wiki]

so in our case the eigenvalue equation takes the form:


\begin{eqnarray}
   -L^2+L^2(I_{xx}+I_{yy}+I_{zz})+L(I_{xy}^2+I_{yz}^2+I_{xz}^2-I_{xx}I_{yy}-I_{yy}I_{zz}-I_{xx}I_{zz}) \\
   +I_{xx}I_{yy}I_{zz} - I_{xx}I_{yz}^2 -I_{yy}I_{zz}^2 I_{zz}I_{xy}^2 + 2I_{xy}I_{yz}I_{zx}
\end{eqnarray}
This equation can be solved analytically, again we may use Wikipedia (
http://en.wikipedia.org/wiki/Cubic_function )

Now, the eigenvalues found that way are principal moments of inertia of
a cell. That is they are components of inertia tensor in a coordinate
frame rotated in such a way that off-diagonal elements of inertia tensor
are 0:


I = \begin{eqnarray}
   \begin{vmatrix}
     I_{xx} & 0 & 0 \\
     0 & I_{yy} & 0 \\
     0 & 0 & I_zz
   \end{vmatrix}
\end{eqnarray}
In our cell shape constraint we will want to obtain ellipsoidal cells.
Therefore the target tensor of inertia for the cell should be tensor if
inertia for ellipsoid:


I = \begin{eqnarray}
   \begin{vmatrix}
     \frac{1}{5}(b^2+c^2) & 0 & 0 \\
     0 & \frac{1}{5}(a^2+c^2) & 0 \\
     0 & 0 & \frac{1}{5}(a^2+b^2)
   \end{vmatrix}
\end{eqnarray}
where a, b, c are parameters describing the surface of an ellipsoid:


\begin{eqnarray}
   \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\end{eqnarray}
In other words a, b, c are half lengths of principal axes (they are
analogues of circle’s radius).

Now we can determine semi axes lengths in terms of principal moments of
inertia by inverting the following set of equations:


\begin{eqnarray}
  I_{xx} = \frac{1}{5}(b^2+c^2) \\
  I_{yy} = \frac{1}{5}(a^2+c^2) \\
  I_{zz} = \frac{1}{5}(a^2+b^2)
\end{eqnarray}
Once we have calculated semiaxes lengths in terms of moments of inertia
we can plug –in actual numbers for moment of inertia (the ones for
actual cell) and obtain lengths of semiexes. Next we apply quadratic
constraint on largest (semimajor) and smallest (seminimor axes). This is
what elongation plugin does.
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Managing CompuCell3D simulations (CC3D project files)

Until version 3.6.0 CompuCell3D simulations were stored as a combination
of Python, CC3DML (XML), and PIF files. Starting with version
3.6.0 we introduced new way of managing CC3D simulations by enforcing
that a single CC3D simulation is stored in a folder containing .cc3d
project file describing simulation resources (.cc3d is in fact XML),
such as CC3DML configuration file, Python scripts, PIF files,
Concentration files etc…* and a directory called Simulation where all
the resources reside. The structure of the new-style CC3D simulation is
presented in the diagram below:

->CellsortDemo



CellsortDemo.cc3d




->Simulation


Cellsort.xml

Cellsort.py

CellsortSteppables.py

Cellsort.piff

FGF.txt







Bold fonts denote folders. The benefit of using CC3D project files
instead of loosely related files are as follows:


	Previously users had to guess which file needs to be open in CC3D –
CC3DML or Python. While in a well written simulation one can link the
files together in a way that when user opens either one the
simulation would work but, nevertheless, such approach was clumsy and
unreliable. Starting with 3.6.0 users open .cc3d file and they don’t
have to stress out that CompUCell3D will complain with error message.





Warning

The only way to load simulation in CompuCell3D is to use .cc3d project. We no longer
support previous ways of opening simulations
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CellType Plugin

An example of the plugin that stores user assigned data that is used to
configure simulation before it is run is a CellType Plugin. This plugin
is responsible for defining cell types and storing cell type
information. It is a basic plugin used by virtually every CompuCell
simulation. The syntax is straight forward as can be seen in the example
below:

<Plugin Name="CellType">
  <CellType TypeName="Medium" TypeId="0"/>
  <CellType TypeName="Fluid" TypeId="1"/>
  <CellType TypeName="Wall" TypeId="2" Freeze=""/>
</Plugin>





Here we have defined three cell types that will be present in the
simulation: Medium, Fluid, Wall. Notice that we assign a number – TypeId
– to every cell type. It is strongly recommended that TypeId’s are
consecutive positive integers (e.g. 0,1,2,3...). Medium is traditionally
given TypeId=0 and we recommend that you keep this convention.


Note

Important: Every CC3D simulation must define CellType Plugin and
include at least Medium specification.
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CenterOfMass Plugin

CenterOfMass plugin monitors changes n the lattice and updates centroids of the
cell:


\begin{align*}
   x_{CM}^{centroid} &= \sum_{i}x_{i} \\
   y_{CM}^{centroid} &= \sum_{i}y_{i} \\
   z_{CM}^{centroid} &= \sum_{i}z_{i}
\end{align*}
where i denotes pixels belonging to a given cell. To obtain
coordinates of a center of mass of a given cell we divide centroids by
cell volume:


\begin{align*}
   x_{CM} &= \frac{x_{CM}^{centroid}}{V}  \\
   y_{CM} &= \frac{y_{CM}^{centroid}}{V}  \\
   z_{CM} &= \frac{z_{CM}^{centroid}}{V}
\end{align*}
This plugin is aware of boundary conditions and centroids are calculated
properly regardless which boundary conditions are used. The CC3DML
syntax is very simple:

<Plugin Name="CenterOfMass"/>





To access center of mass coordinates from Python we use the following
syntax:

print('x-component of COM is:', cell.xCOM)
print ('y-component of COM is:', cell.yCOM)
print ('z-component of COM is:', cell.zCOM)






Warning

Center of mass parameters in Python are read only. Any
attempt to modify them will likely mess up the simulation.
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Chemotaxis

Chemotaxis plugin, is used to simulate chemotaxis
of cells. For every pixel copy, this plugin calculates change of energy
associated with pixel move. There are several methods to define a change
in energy due to chemotaxis. By default we define a chemotaxis using the
following formula:


\begin{eqnarray}
     \Delta E_{chem} = -\lambda\left ( c(x_{destination}) - c(x_{source}) \right )
\end{eqnarray}
where \(c(x_{source})\) and \(c(x_{destination})\) denote chemical concentration at
the pixel-copy-source and pixel-copy-destination pixel, respectively.

The body of the Chemotaxis plugin description contains sections called
ChemicalField. In this section we tell CompuCell3D which module contains
chemical field that we wish to use for chemotaxis. In our case it is
FlexibleDiffusionSolverFE. Next we specify the name of the field - FGF.
Subsequently, we specify lambda for each cell type so that cells of
different type may respond differently to a given chemical. In
particular types not listed will not respond to chemotaxis at all.

Occasionally we may want to use different formula for the chemotaxis
than the one presented above. Current version of CompCell3D supports the
following definitions of change in chemotaxis energy (Saturation and
SaturationLinear respectively ):


\begin{eqnarray}
    \Delta E_{chem} = -\lambda \left [ \frac{c(x_{destination})}{s+c(x_{destination})} - \frac{c(x_{source})}{s+c(x_{source})} \right ]
\end{eqnarray}
or


\begin{eqnarray}
    \Delta E_{chem} = -\lambda \left [ \frac{c(x_{destination})}{sc(x_{destination})+1} - \frac{c(x_{source})}{sc(x_{source})+1} \right ]
\end{eqnarray}
where s denotes saturation constant. To use first of the above
formulas we set the value of the saturation coefficient:

<Plugin Name="Chemotaxis">
   <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
        <ChemotaxisByType Type="Amoeba" Lambda="0"/>
        <ChemotaxisByType Type="Bacteria" Lambda="2000000" SaturationCoef="1"/>
   </ChemicalField>
</Plugin>





Notice that this only requires small change in line where you previously
specified only lambda.

<ChemotaxisByType Type="Bacteria" Lambda="2000000" SaturationCoef="1"/>





To use second of the above formulas use SaturationLinearCoef instead of
SaturationCoef:

<Plugin Name="Chemotaxis">
   <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
      <ChemotaxisByType Type="Amoeba" Lambda="0"/>
     <ChemotaxisByType Type="Bacteria" Lambda="2000000" SaturationLinearCoef="1"/>
   </ChemicalField>
</Plugin>





The lambda value specified for each cell type can also be scaled using the
LogScaled formula according to the concentration of the field at the center of mass of the
chemotaxing cell \(c_{CM}\),


\begin{eqnarray}
    \Delta E_{chem} = -\frac{\lambda}{s + c_{CM}} \left ( c(x_{destination}) - c(x_{source}) \right )
\end{eqnarray}
The LogScaled formula is commonly used to mitigate excessive forces on cells
in fields that vary over several orders of magnitude, and can be selected
by setting the value of \(s\) with the attribute LogScaledCoef like as follows,

<ChemotaxisByType Type="Amoeba" Lambda="100" LogScaledCoef="1"/>





Sometimes it is desirable to have chemotaxis at the interface
between only certain types of cells and not between other
cell-type-pairs. In such a case we augment ChemotaxisByType element with
the following attribute:

<ChemotaxisByType Type="Amoeba" Lambda="100 "ChemotactTowards="Medium"/>





This will cause that the change in chemotaxis energy will be non-zero
only for those pixel copy attempts that happen between pixels belonging
to Amoeba and Medium.


Note

The term ChemotactTowards means “chemotax at the interface between”
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Calculating center of mass when using periodic boundary conditions.

When you are running calculation with periodic boundary condition you
may end up with situation like in the figure below:

[image: periodic_bc_com]

Figure 6 A connected cell in the lattice edge area – periodic boundary conditions are applied

Clearly, what happens is that simply connected cell is wrapped around the
lattice edge so part of it is in the region of high values of x
coordinate and the other is in the region where x coordinates have low
values. Consequently, a naïve calculation of center of mass position
according to:


\begin{eqnarray}
   x_{COM} = \frac{\sum_i x_i}{V}
\end{eqnarray}
or in vector form:


\begin{eqnarray}
   \vec{r}_{COM} = \frac{\sum_i \vec{r}_i}{V}
\end{eqnarray}
would result in being somewhere in the middle of the lattice and
obviously outside the cell. A better procedure could be as follows:

Before calculating center of mass when new pixel is added or lost we
“shift” a cell and new pixel (gained or lost )to the middle of the
lattice do calculations “in the middle of the lattice” and shift back.
Now if after shifting back it turns out that center of mass of a cell
lies outside lattice position it in the center of mass by applygin a
shift equal to the length of the lattice and whose direction should be
such that the center of mass of the cell ends up inside the lattice
(there is only one such shift and it might be be equal to zero vector).

This is how we do it using mathematical formulas:


\begin{eqnarray}
   \vec{s} = \vec{r}_{COM} - \vec{c}
\end{eqnarray}
First we define shift vector \(\vec{s}\) as a vector difference between vector
pointing to center of mass of the cell \(\vec{r}_{COM}\) and vector pointing to
(approximately) the middle of the lattice \(\vec{c}\).

Next we shift cell to the middle of the lattice using :


\begin{eqnarray}
   \vec{r'}_{COM} = \vec{r}_{COM} - \vec{s}
\end{eqnarray}
where \(\vec{r'}_{COM}\) denotes center of mass position of a cell after shifting but
before adding or subtracting a pixel.

Next we take into account the new pixel (either gained or lost) and
calculate center of mass position (for the shifted cell):


\begin{eqnarray}
   \vec{r'}_{COM}^{new} = \frac{\vec{r'}_{COM}V + \vec{r}_i}{V+1}
\end{eqnarray}
Above we have assumed that we are adding one pixel.

Now all that we need to do is to shift back \(\vec{r'}_{COM}^{new}\) by same vector \(\vec{s}\) that brought
cell to (approximately) center of the lattice:


\begin{eqnarray}
   \vec{r}_{COM}^{new} = \vec{r'}_{COM}^{new} + \vec{s}
\end{eqnarray}
We are almost done. We still have to check if \(\vec{r'}_{COM}^{new}\) is inside the lattice. If
this is not the case we need to shift it back to the lattice but now we
are allowed to use only a vector \(\vec{P}\) whose components are multiples of
lattice dimensions (and we can safely restrict to +1 and -1 multiples of
the lattice dimensions) . For example we may have:


\begin{eqnarray}
   \vec{P} = (x_{max}, -y_{max}, 0)
\end{eqnarray}
where \(\vec{x}_{max}\), \(\vec{y}_{max}\), \(\vec{z}_{max}\) are dimensions of the lattice.

There is no cheating here. In the lattice with periodic boundary
conditions you are allowed to shift point coordinates a vector whose
components are multiples of lattice dimensions.

All we need to do is to examine new center of mass position and form
suitable vector \(\vec{P}\).
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Command line options of CompuCell3D

Although most users run CC3D using Player GUI sometimes it is very
convenient to run CC3D using command line options. CC3D allows to invoke
Player directly from command line which is convenient because if saves
several clicks and if you run many simulations this might be quite
convenient.

Remark: On Windows we use .bat extension for run scripts and on
Linux/OSX it is .sh. Otherwise all the material in this section applies
to all the platforms.


CompuCell3D Player Command Line Options

The command line options for running simulation with the player are as
follows:

compucell3d.bat [options]





Options are:

-i <simulation file> - users specify .cc3d simulation file they want to run.

-s <screenshotDescriptionFileName> - name of the file containing
description of screenshots to be taken with the simulation. Usually this
file is prepared using Player by switching to different views, clickin
camera button and saving screenshot description file from the Player
File menu.

-o <customScreenshotDirectoryName> - allows users to specify where
screenshots will be written. Overrides default settings.

--noOutput - instructs CC3D not to store any screenshots. Overrides
Player settings.

--exitWhenDone - instructs CC3D to exit at the end of simulation.
Overrides Player settings.

-h, --help - prints command line usage on the screen

Example command may look like (windows):

compucell3d.bat –i Demos\Models\cellsort\cellsort_2D\cellsort_2d.cc3d --noOutput





or on linux:

compucell3d.sh –i Demos/Models/cellsort/cellsort_2D/cellsort_2d.cc3d --noOutput





and OSX:

compucell3d.command –i Demos/Models/cellsort/cellsort_2D/cellsort_2d.cc3d --noOutput







Running CompuCell3D in a GUI-Less Mode - Command Line Options.

Sometimes when you want to run CC3D on a cluster you will have to use
runScript.bat which allows running CC3D simulations without invoking
GUI. However, all the screenshots will be still stored.

Remark: current version of this script does not handle properly
relative paths so it has to be run from the installation directory of
CC3D i.e. you have to cd into this directory prior to runnit
runScript.bat. Another solution is to use full paths.

The output of this script is in the form of vtk files which can be
subsequently replayed in the Player (and one can take screenshots then).
By default all fields present in the simulation are stored in the vtk
file. If users want to remove some of the fields from being stored in
the vtk format they have to pass this information in the Python script:

CompuCellSetup.doNotOutputField(_fieldName)





Storing entire fields (as opposed to storing screenshots) preserves
exact snapshots of the simulation and allows result postprocessing. In
addition to the vtk files runScript stores lattice description file with
.dml` extension which users open in the Player (File->Open Lattice Description Summary File…)
if they want to reply generated vtk files.

The format of the command (windows):

runScript.bat [options]





linux:

runScript.sh [options]





OSX:

runScript.command [options]





The command line options for runScript.bat are as follows:

-i <simulation file> - users specify .cc3d simulation file they want to run.

-c <outputFileCoreName> - allows users to specify core name for the vtk
files. The default name for vtk files is Step

-o <customVtkDirectoryName> - allows users to specify where vtk files
and the .dml file will be written. Overrides default settings

-f <frequency> or –outputFrequency=<frequency> - allows to specify how
often vtk files are stored to the disk. Those files tend to be quite
large for bigger simulations so storing them every single MCS (default
setting) slows down simulation considerably and also uses a lot of disk
space.

--noOutput - instructs CC3D not to store any output. This option makes
little sense in most cases.

-h, --help - prints command line usage on the screen

Example command may look as follows(windows):

runScript.bat –i Demos\CompuCellPythonTutorial\InfoPrinter\cellsort_2D_info_printer.cc3d –f 10 –o Demos\CompuCellPythonTutorial\InfoPrinter\screenshots –c infoPrinter





linux:

runScript.sh –i Demos/CompuCellPythonTutorial/InfoPrinter/cellsort_2D_info_printer.cc3d –f 10 –o Demos/CompuCellPythonTutorial/InfoPrinter/screenshots –c infoPrinter





osx:

runScript.command –i Demos/CompuCellPythonTutorial/InfoPrinter/cellsort_2D_info_printer.cc3d –f 10 –o Demos/CompuCellPythonTutorial/InfoPrinter/screenshots –c infoPrinter
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Compartmentalized cells. ContactInternal Plugin

Calculating contact energies between compartmentalized cells is
analogous to the non-compartmentalized case. The energy expression takes
the following form:


\begin{eqnarray}

    E_{adhesion} = \sum_{i,j,neighbors} J\left ( \sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j})  \right )

\end{eqnarray}
where i and j denote pixels , σ(µ,ν) denotes a cell
type of a cell with cluster id µ and cell id ν . In compartmental
cell models a cell is a collection of subcells. Each subcell has a
unique id  ν (cell id). In addition to that each subcell will have
additional attribute, a cluster id (µ) that determines to which cluster of
subcells a given subcell belongs. Tthink of a cluster as a cell with
nonhomogenous cytoskeleton. So a cluster corresponds to a biological cell and
subcells (or compartments) represents parts of a cell e.g. a nucleus. The core
idea here is to have different contact
energies between subcells belonging to the same cluster and different
energies for cells belonging to different clusters. Technically subcells
of a cluster are “regular” CompuCell3D cells. By giving them an extra
attribute cluster id ((µ) we can introduce a concept of compartmental cells.
In our convention σ(0,0) denotes medium

[image: compartments]

Figure 2. Two compartmentalized cells (cluster id \(\mu=1\) and cluster id \(\mu=2\)).
Compartmentalized cell \(\mu=1\) consists of subcells with cell id \(\nu=1,2,3\) and compartmentalized cell
\(\mu=2\) consists of subcells with cell id  \(\nu=4,5,6\)

Introduction of cluster id and cell id are essential for the definition
of \(J\left ( \sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j})  \right )\)

Indeed:


    \begin{cases}
      J\left ( \sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j})  \right ) =  J^{external}\left ( \sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j})  \right ) & \text{ if } \mu_i \neq \mu_j \\
      J\left ( \sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j})  \right ) =  J^{internal}\left ( \sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j})  \right ) & \text{ if } \mu_i = \mu_j
    \end{cases}
As we can see from above there are two hierarchies of contact energies –
external and internal. To describe adhesive interactions between
different compartmentalized cells we use two plugins: Contact and
ContactInternal. Contact plugin calculates energy between two cells
belonging to different clusters and ContactInternal calculates energies
between cells belonging to the same cluster. An example syntax is shown
below

<Plugin Name="Contact">

    <Energy Type1="Base" Type2="Base">0</Energy>
    <Energy Type1="Top" Type2="Base">25</Energy>
    <Energy Type1="Center" Type2="Base">30</Energy>
    <Energy Type1="Bottom" Type2="Base">-2</Energy>
    <Energy Type1="Side1" Type2="Base">25</Energy>
    <Energy Type1="Side2" Type2="Base">25</Energy>
    <Energy Type1="Medium" Type2="Base">0</Energy>


    <Energy Type1="Medium" Type2="Medium">0</Energy>
    <Energy Type1="Top" Type2="Medium">30</Energy>
    <Energy Type1="Bottom" Type2="Medium">20</Energy>
    <Energy Type1="Side1" Type2="Medium">30</Energy>
    <Energy Type1="Side2" Type2="Medium">30</Energy>
    <Energy Type1="Center" Type2="Medium">45</Energy>

    <Energy Type1="Top" Type2="Top">2</Energy>
    <Energy Type1="Top" Type2="Bottom">100</Energy>
    <Energy Type1="Top" Type2="Side1">25</Energy>
    <Energy Type1="Top" Type2="Side2">25</Energy>
    <Energy Type1="Top" Type2="Center">35</Energy>

    <Energy Type1="Bottom" Type2="Bottom">10</Energy>
    <Energy Type1="Bottom" Type2="Side1">25</Energy>
    <Energy Type1="Bottom" Type2="Side2">25</Energy>
    <Energy Type1="Bottom" Type2="Center">35</Energy>

    <Energy Type1="Side1" Type2="Side1">25</Energy>
    <Energy Type1="Side1" Type2="Center">25</Energy>
    <Energy Type1="Side2" Type2="Side2">25</Energy>
    <Energy Type1="Side2" Type2="Center">25</Energy>
    <Energy Type1="Side1" Type2="Side2">15</Energy>

    <Energy Type1="Center" Type2="Center">20</Energy>

    <NeighborOrder>2</NeighborOrder>
</Plugin>





and

<Plugin Name="ContactInternal">

    <Energy Type1="Base" Type2="Base">0</Energy>
    <Energy Type1="Base" Type2="Bottom">0</Energy>
    <Energy Type1="Base" Type2="Side1">0</Energy>
    <Energy Type1="Base" Type2="Side2">0</Energy>
    <Energy Type1="Base" Type2="Center">0</Energy>

    <Energy Type1="Top" Type2="Top">4</Energy>
    <Energy Type1="Top" Type2="Bottom">25</Energy>
    <Energy Type1="Top" Type2="Side1">22</Energy>
    <Energy Type1="Top" Type2="Side2">22</Energy>
    <Energy Type1="Top" Type2="Center">15</Energy>

    <Energy Type1="Bottom" Type2="Bottom">4</Energy>
    <Energy Type1="Bottom" Type2="Side1">15</Energy>
    <Energy Type1="Bottom" Type2="Side2">15</Energy>
    <Energy Type1="Bottom" Type2="Center">10</Energy>

    <Energy Type1="Side1" Type2="Side1">11</Energy>
    <Energy Type1="Side2" Type2="Side2">11</Energy>
    <Energy Type1="Side1" Type2="Side2">11</Energy>

    <Energy Type1="Side2" Type2="Center">10</Energy>
    <Energy Type1="Side1" Type2="Center">10</Energy>

    <Energy Type1="Center" Type2="Center">2</Energy>

    <NeighborOrder>2</NeighborOrder>
</Plugin>





Depending whether pixels for which we calculate contact energies belong
to the same cluster or not we will use internal or external contact
energies respectively.
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Connectivity Plugins

The “basic” Connectivity plugin works only in 2D and only on square
lattice and is used to ensure that cells are connected or in other
words to prevent separation of the cell into pieces. The detailed
algorithm for this plugin is described in Roeland Merks’ paper “Cell
elongation is a key to in-silico replication of in vitro
vasculogenesis and subsequent remodeling” Develo