

CompuCell3D Reference Manual - 4.3.0

The focus of this manual is to teach you how to use CC3DML (XML-based syntax) to build powerful multi-scale
multi-cell tissue simulations. We will assume that you have a working knowledge of XML.
You do not have to be an XML guru but you should know how to write simple XML documents.

Authors

	Maciej H. Swat

	Julio Belmonte

	T.J. Sego

	James Glazier

Funding

From early days CompuCell3D was funded by science grants. The list of funding entities include

	National Institutes of Health (NIH)

	US Environmental Protection Agency (EPA)

	National Science Foundation (NSF)

	Falk Foundation

	Indiana University (IU)

	IBM

The development of CC3D was funded fully or partially by the following awards:

	National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering,U24 EB028887, “Dissemination of libRoadRunner and CompuCell3D”, (09/30/2019 – 06/30/2024)

	National Science Foundation, NSF 1720625, “Network for Computational Nanotechnology - Engineered nanoBIO Node”, (09/1/2017-08/31/2022)

	National Institutes of Health, National Institute of General Medical Sciences, R01 GM122424, “Competitive Renewal of Development and Improvement of the Tissue Simulation Toolkit”, (02/01/2017 - 01/31/2021)

	Falk Medical Research Trust Catalyst Program, Falk 44-38-12, “Integrated in vitro/in silico drug screening for ADPKD”, (11/30/2014-11/29/2017)

	National Institutes of Health, National Institute of General Medical Sciences, National Institute of Environmental Health Sciences and National Institute of Biomedical Imaging and Bioengineering, U01 GM111243 “Development of a Multiscale Mechanistic Simulation of Acetaminophen-Induced Liver Toxicity”, (9/25/14-6/30/19)

	National Institutes of Health, National Institute of General Medical Sciences, R01 GM076692, “Competitive Renewal of MSM: Multiscale Studies of Segmentation in Vertebrates”, (9/1/05-8/31/18)

	
	
	Environmental Protection Agency, R835001, “Ontologies for Data & Models for Liver Toxicology”, (6/1/11-5/30/15)

	National Institutes of Health, National Institute of General Medical Sciences, R01 GM077138, “Competitive Renewal of Development and Improvement of the Tissue Simulation Toolkit”, (9/1/07-3/31/15).

	
	
	Environmental Protection Agency, National Center for Environmental Research, R834289, “The Texas-Indiana Virtual STAR Center: Data-Generating in vitro and in silico Models of Development in Embryonic Stem Cells and Zebrafish”, (11/1/09-10/31/13)

	Pervasive Technologies Laboratories Fellowship (Indiana University Bloomington) (12/1/03-11/30/04).

	IBM Innovation Institute Award (9/25/03-9/24/06)

	National Science Foundation, Division of Integrative Biology, IBN-0083653, “BIOCOMPLEXITY–Multiscale Simulation of Avian Limb Development”, (9/1/00-8/31/07)

Introduction to CompuCell3D Modules CC3DML Syntax

This CompuCell3D reference material provides users with fairly detailed
description of CC3DML syntax (CC3DML is XML-based model description
format) of CC3D modules. The presented material is intended for users
who are already familiar with CompuCell3D basics and know how to build
and run simple simulations such as cell-sorting, bacterium macrophage or
cell-type-oscillator. Since we often show CC3DML syntax and accompanying
Python syntax for CC3D scripting we assume that users are familiar with
Python. For readers who are using CompuCell3D for the first time we
strongly recommend reading “Introduction To CompuCell3D”. Complete
description of CC3D Python scripting can be found in “CC3D Python
Scripting Manual”. Both manuals are available from
www.compucell3d.org [http://www.compucell3d.org] or at your nearest
bookstore.

Potts and Lattice

	Potts Section

	Lattice Type

Potts Section

The first section of the .xml file defines the global parameters of the
lattice and the simulation.

<Potts>
 <Dimensions x="101" y="101" z="1"/>
 <Anneal>0</Anneal>
 <Steps>1000</Steps>
 <FluctuationAmplitude>5</FluctuationAmplitude>
 <Flip2DimRatio>1</Flip2DimRatio>
 <Boundary_y>Periodic</Boundary_y>
 <Boundary_x>Periodic</Boundary_x>
 <NeighborOrder>2</NeighborOrder>
 <DebugOutputFrequency>20</DebugOutputFrequency>
 <RandomSeed>167473</RandomSeed>
 <EnergyFunctionCalculator Type="Statistics">
 <OutputFileName Frequency="10">statData.txt</OutputFileName>
 <OutputCoreFileNameSpinFlips Frequency="1" GatherResults="" OutputAccepted="" OutputRejected="" OutputTotal=""/>
 </EnergyFunctionCalculator>
</Potts>

This section appears at the beginning of the configuration file. Line
<Dimensions x="101" y="101" z="1"/> declares the dimensions of the
lattice to be``101 x 101 x 1``, i.e., the lattice is two-dimensional and
extends in the xy plane. The basis of the lattice is 0 in each
direction, so the 101 lattice sites in the x and y directions have
indices ranging from 0 to 100. <Steps>1000</Steps> tells CompuCell how
long the simulation lasts in MCS. After executing this number of steps,
CompuCell can run simulation at zero temperature for an additional
period. In our case it will run for <Anneal>10</Anneal> extra steps.
FluctuationAmplitude parameter determines intrinsic fluctuation or
motility of cell membrane.

Note

FluctuationAmplitude is a Temperature
parameter in classical GGH model formulation. We have decided to use
FluctuationAmplitude term instead of temperature because using word
Temperature to describe intrinsic motility of cell membrane was quite
confusing.

 Plugins Section

Plugins Section

In this section we overview CC3DML syntax for all the plugins available
in CompuCell3D. Plugins are either energy functions, lattice monitors or
store user assigned data that CompuCell3D uses internally to configure
simulation before it is run.

	CellType Plugin

	Global Volume and Surface Constraints

	VolumeTracker and SurfaceTracker plugins

	VolumeFlex Plugin

	NeighborTracker Plugin

	Chemotaxis

	ExternalPotential Plugin

	CenterOfMass Plugin

	Contact Plugin

	AdhesionFlex Plugin

	Compartmentalized cells. ContactInternal Plugin

	LengthConstraint Plugin

	Connectivity Plugins

	Secretion / SecretionLocalFlex Plugin

	PDESolverCaller Plugin

	FocalPointPlasticity Plugin

	Curvature Plugin

	BoundaryPixelTracker Plugin

	MomentOfInertia Plugin

	ConvergentExtension plugin

CellType Plugin

An example of the plugin that stores user assigned data that is used to
configure simulation before it is run is a CellType Plugin. This plugin
is responsible for defining cell types and storing cell type
information. It is a basic plugin used by virtually every CompuCell
simulation. The syntax is straight forward as can be seen in the example
below:

<Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Fluid" TypeId="1"/>
 <CellType TypeName="Wall" TypeId="2" Freeze=""/>
</Plugin>

Here we have defined three cell types that will be present in the
simulation: Medium, Fluid, Wall. Notice that we assign a number – TypeId
– to every cell type. It is strongly recommended that TypeId’s are
consecutive positive integers (e.g. 0,1,2,3...). Medium is traditionally
given TypeId=0 and we recommend that you keep this convention.

Note

Important: Every CC3D simulation must define CellType Plugin and
include at least Medium specification.

 Steppable Section

Steppable Section

Steppables are CompuCell modules that are called every Monte Carlo Step
(MCS). More precisely, they are called after all the pixel copy attempts
in a given MCS have been carried out. Steppables may have various
functions - for example solving PDEs, checking if critical
concentration threshold have been reached, updating target volume or
target surface given the concentration of come growth factor,
initializing cell field, writing numerical results to a file, etc… In
general, steppables perform all functions that need to be done every
MCS. In the reminder of this section we will present steppables
currently available in the CompuCell3D and describe their usage.

Tip

It is most convenient to implement Steppables in Python. However, in certain situations
where code performance is an issue users can implement steppables in C++

 PDESolvers in CompuCell3D

PDESolvers in CompuCell3D

One of the most important and time consuming parts of the CC3D
simulation is to solve all sorts of Partial Differential Equations which
describe behavior of certain simulation objects (usually chemical
fields). Most of the CC3D PDE solvers solve PDE with diffusive terms.
Because we are dealing with moving boundary condition problems it was
easiest and probably most practical to use explicit scheme of Finite
Difference method. Most of CC3D PDE solvers run on multi core
architectures and we also have GPU solvers which run and high
performance GPU’s and they also provide biggest speedups in terms of
performance. Because CC3D solvers were implemented at different CC3D
life cycle and often in response to particular user requests, CC3DML
specification may differ from solver to solver. However, the basic
structure of CC3DML PDE solver code follows similar pattern .

	FlexibleDiffusionSolver

	Instabilities of the Forward Euler Method

	DiffusionSolverFE

	AdvectionDiffusionSolver.

	FastDiffusionSolver2D

	KernelDiffusionSolver

	ReactionDiffusionSolver

	Steady State diffusion solver

	Fluctuation Compensator Solver Add-On

FlexibleDiffusionSolver

This steppable is one of the basic and most important modules in
CompuCell3D simulations.

Tip

Starting from version 3.6.2 we developed DiffusionSolverFE
which eliminates several inconveniences of FlexibleDiffusionSolver.

 Appendix

Appendix

This section covers some of the computational algorithms we use in CC3D

	Calculating Inertia tensor In CC3D

	Calculating shape constraint of a cell – elongation term

	Forward Euler method for solving PDE’s in CompuCell3D.

	Calculating center of mass when using periodic boundary conditions.

	Dividing cluster cells

	Command line options of CompuCell3D

	Managing CompuCell3D simulations (CC3D project files)

Calculating Inertia tensor In CC3D

For each cell the inertia tensor is defined as follows:

\begin{eqnarray}

 I = \begin{bmatrix}
 \sum_i y_i^2+z_i^2 & -\sum_i x_i y_i & -\sum_i x_i z_i \\
 -\sum_i x_i y_i & \sum_i x_i^2+z_i^2 & -\sum_i y_i z_i \\
 -\sum_i x_i z_i & -\sum_i y_i z_i & \sum_i x_i^2+y_i^2 \\
 \end{bmatrix}
\end{eqnarray}
where index \(i\) denotes i-th pixel of a given cell and \(x_i\),
\(y_i\) and \(z_i\) are coordinates of that pixel in a given
coordinate frame.

[image: inertia_tensor_fig3]

Figure 3: Cell and coordinate system passing through center of mass of a cell.
Notice that as cell changes shape the position of center of mass moves.

[image: inertia_tensor_fig4]

Figure 4: Cell and its coordinate frame in which we calculate inertia tensor

In Figure 4 we show one possible coordinate frame in which one can
calculate inertia tensor. If the coordinate frame is fixed calculating
components of inertia tensor for cell gaining or losing one pixel is
quite easy. We will be adding and subtracting terms like \(y_i^2+z_i^2\) or \(x_i z_i\).

However, in CompuCell3D we are mostly interested in knowing tensor of
inertia of a cell with respect to xyz coordinate frame with origin at
the center of mass (COM) of a given cell as shown in Figure 3. Now, to
calculate such tensor we cannot simply add or subtract terms \(y_i^2+z_i^2\) or \(x_i z_i\) to
account for lost or gained pixel. If a cell gains or loses a pixel its
COM coordinates change. If so then all the \(x_i\),:math:y_i, \(z_i\)
coordinates that appear in the inertia tensor
expression will have different values. Thus, for each change in cell shape
(gain or loss of pixel) we would have to recalculate inertia tensor from
scratch. This would be quite time consuming and would require us to keep
track of all the pixels belonging to a given cell. It turns out, however,
that there is a better way of keeping track of inertia tensor for cells.
We will be using parallel axis theorem to do the calculations. Parallel
axis theorem states that if \(I_{COM}\) is a moment of inertia with
respect to axis passing through center of mass then we can calculate
moment of inertia with respect to any parallel axis to the one passing
through the COM by using the following formula:

\begin{eqnarray}
 I_{x'x'} = I_{xx} + Md^2
\end{eqnarray}
where \(I_{xx}\) denotes moment of inertia with respect to x axis passing through
center of mass, \(I_{x'x'}\) is a moment of inertia with respect to some other axis parallel to
the x , d is the distance between the axes two and M is mass of the cell.

Let us now draw a picture of a cell gaining one pixel:

[image: inertia_tensor_fig5]

Figure 5: Cell gaining one pixel.d denotes a distance from origin of a fixed frame
of reference to a center of mass of a cell before cell gains new pixel.
\(d_{new}\) denotes same distance but after cell gains new pixel

Now using parallel axis theorem we can write expression for the moment
of inertia after cell gains one pixel the following that:

\begin{eqnarray}
 I_{xx}^{new} = I_{x'x'}^{new} - (V+1)d_{new}^2
\end{eqnarray}
where, as before, \(I_{xx}^{new}\) denotes moment of inertia of a cell with new pixel with
respect to x axis passing through center of mass, \(I_{x'x'}^{new}\) is a moment of
inertia with respect to axis parallel to the x axis passing through
center of mass, \(d_{new}\) is the distance between the axes and
\(V+1\) is volume of the cell after it gained one pixel. Now let us
rewrite above equation by adding ad subtracting \(Vd^2\) term:

\begin{eqnarray}
 I_{xx}^{new} = I_{x'x'}^{old} + y_{n+1}^2 + z_{n+1}^2 - Vd^2 + Vd^2 (V+1)d_{new}^2 \\
 = I_{x'x'}^{old} - Vd^2 + y_{n+1}^2 + z_{n+1}^2 + Vd^2 (V+1)d_{new}^2 \\
 I_{xx}^{old} - Vd^2 + y_{n+1}^2 + z_{n+1}^2 + Vd^2 (V+1)d_{new}^2
\end{eqnarray}
Therefore we have found an expression for moment of inertia passing
through the center of mass of the cell with additional pixel. Note that
this expression involves moment of inertia but for the old cell (i.e.
the original cell, not the one with extra pixel). When we add new pixel
we know its coordinates and we can also easily calculate \(d_new\) .
Thus, when we need to calculate the moment of inertia for new cell
instead of performing summation as given in the definition of the
inertia tensor we can use much simpler expression.

This was diagonal term of the inertia tensor. What about off-diagonal
terms? Let us write explicitly expression for \(I_{xy}\) :

\begin{eqnarray}
 I_{xy} = -\sum_i^N (x_i-x_{com})(y_i-y_{com}) = -\sum_i^N x_i y_i + x_{COM}\sum_i^Ny_i + y_{COM}\sum_i^Nx_i - x_{COM}y_{COM}\sum_i^N \\
 = -\sum_i^N x_i y_i + x_{COM}Vy_{COM} + y_{COM}Vx_{COM} - x_{COM}y_{COM} V \\
 = -\sum_i^N x_i y_i + V x_{COM}y_{COM}
\end{eqnarray}
where \(x_{COM}\), \(y_{COM}\) denote x and y center of mass positions of the cell,
\(V\) denotes cell volume. In the above formula we have used the fact that:

\begin{eqnarray}
 x_{COM} = \frac{\sum_i x_i}{V} \implies \sum_i x_i = x_{COM} V
\end{eqnarray}
and similarly for the y coordinate.

Now, for the new cell with additional pixel we have the following
relation:

\begin{eqnarray}
 I_{xy}^{new} = - \sum_i^{N+1} x_i y_i + (V+1)x^{new}_{COM}y^{new}_{COM} \\
 = - \sum_i^{N} x_i y_i + V x_{COM}y_{COM} - x_{COM}Vy_{COM} + (V+1)x^{new}_{COM}y^{new}_{COM} - x_{N+1}y_{n+1} \\
 = I_{xy}^{old} - V x_{COM}y_{COM} + (V+1)x^{new}_{COM}y^{new}_{COM} - x_{N+1}y_{n+1}
\end{eqnarray}
where we have added and subtracted \(V x_{COM}y_{COM}\) to be able to form \(I_{xy}^{old}- \sum_i^{N} x_i y_i+ V x_{COM}y_{COM}\)
on the right hand side of the expression for \(I_{xy}^{new}\) . As it was the case for diagonal element,
calculating off-diagonal of the inertia tensor involves ::math`I_{xy}^{old}` and positions of
center of mass of the cell before and after gaining new pixel. All those
quantities are either known a priori (::math`I_{xy}^{old}`) or can be easily calculated
(center of mass position after gaining one pixel).

Therefore, we have shown how we can calculate tensor of inertia for a
given cell with respect to a coordinate frame with origin at cell’s
center of mass, without evaluating full sums. Such “local” calculations
greatly speed up simulations

Calculating shape constraint of a cell – elongation term

The shape of single cell immersed in medium and not subject to too
drastic surface or surface constraints will be spherical (circular in
2D). However in certain situation we may want to use cells which are
elongated along one of their body axes. To facilitate this we can place
constraint on principal lengths of cell. In 2D it is sufficient to
constrain one of the principal lengths of cell how ever in 3D we need
to constrain 2 out of 3 principal lengths. Our first task is to
diagonalize inertia tensor (i.e. find a coordinate frame transformation
which brings inertia tensor to a diagonal form)

Diagonalizing inertia tensor

We will consider here more difficult 3D case. The 2D case is described
in detail in M.Zajac, G.L.jones, J,A,Glazier “Simulating convergent
extension by way of anisotropic differential adhesion” Journal of
Theoretical Biology 222 (2003) 247–259.

In order to diagonalize inertia tensor we need to solve eigenvalue
equation:

\begin{eqnarray}
 det(I-\lambda) = 0
\end{eqnarray}
or in full form

\begin{eqnarray}

 0 = \begin{vmatrix}
 \sum_i y_i^2+z_i^2 - \lambda & -\sum_i x_i y_i & -\sum_i x_i z_i \\
 -\sum_i x_i y_i & \sum_i x_i^2+z_i^2 - \lambda & -\sum_i y_i z_i \\
 -\sum_i x_i z_i & -\sum_i y_i z_i & \sum_i x_i^2+y_i^2 - \lambda \\
 \end{vmatrix} = \begin{vmatrix}
 I_{xx} - \lambda & I_{xy} & I_xz \\
 I_{xy} & I_{yy} - \lambda & I_yz \\
 I_{xz} & I_{yz} & I_zz - \lambda
 \end{vmatrix}
\end{eqnarray}
The eigenvalue equation will be in the form of 3rd order
polynomial. The roots of it are guaranteed to be real. The polynomial
itself can be found either by explicit derivation, using symbolic
calculation or simply in Wikipedia (http://en.wikipedia.org/wiki/Eigenvalue_algorithm)

[image: eigenvalue_formula_wiki]

so in our case the eigenvalue equation takes the form:

\begin{eqnarray}
 -L^2+L^2(I_{xx}+I_{yy}+I_{zz})+L(I_{xy}^2+I_{yz}^2+I_{xz}^2-I_{xx}I_{yy}-I_{yy}I_{zz}-I_{xx}I_{zz}) \\
 +I_{xx}I_{yy}I_{zz} - I_{xx}I_{yz}^2 -I_{yy}I_{zz}^2 I_{zz}I_{xy}^2 + 2I_{xy}I_{yz}I_{zx}
\end{eqnarray}
This equation can be solved analytically, again we may use Wikipedia (
http://en.wikipedia.org/wiki/Cubic_function)

Now, the eigenvalues found that way are principal moments of inertia of
a cell. That is they are components of inertia tensor in a coordinate
frame rotated in such a way that off-diagonal elements of inertia tensor
are 0:

I = \begin{eqnarray}
 \begin{vmatrix}
 I_{xx} & 0 & 0 \\
 0 & I_{yy} & 0 \\
 0 & 0 & I_zz
 \end{vmatrix}
\end{eqnarray}
In our cell shape constraint we will want to obtain ellipsoidal cells.
Therefore the target tensor of inertia for the cell should be tensor if
inertia for ellipsoid:

I = \begin{eqnarray}
 \begin{vmatrix}
 \frac{1}{5}(b^2+c^2) & 0 & 0 \\
 0 & \frac{1}{5}(a^2+c^2) & 0 \\
 0 & 0 & \frac{1}{5}(a^2+b^2)
 \end{vmatrix}
\end{eqnarray}
where a, b, c are parameters describing the surface of an ellipsoid:

\begin{eqnarray}
 \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\end{eqnarray}
In other words a, b, c are half lengths of principal axes (they are
analogues of circle’s radius).

Now we can determine semi axes lengths in terms of principal moments of
inertia by inverting the following set of equations:

\begin{eqnarray}
 I_{xx} = \frac{1}{5}(b^2+c^2) \\
 I_{yy} = \frac{1}{5}(a^2+c^2) \\
 I_{zz} = \frac{1}{5}(a^2+b^2)
\end{eqnarray}
Once we have calculated semiaxes lengths in terms of moments of inertia
we can plug –in actual numbers for moment of inertia (the ones for
actual cell) and obtain lengths of semiexes. Next we apply quadratic
constraint on largest (semimajor) and smallest (seminimor axes). This is
what elongation plugin does.

Forward Euler method for solving PDE’s in CompuCell3D.

Note

We present more complete derivations of explicit finite
difference scheme for diffusion solver in “Introduction to Hexagonal
Lattices in CompuCell3D” (http://www.compucell3d.org/BinDoc/cc3d_binaries/Manuals/HexagonalLattice.pdf).

 References

References

1. Bassingthwaighte, J. B. (2000) Strategies for the Physiome
project. Annals of Biomedical Engineering 28, 1043-1058.

2. Merks, R. M. H., Newman, S. A., and Glazier, J. A. (2004)
Cell-oriented modeling of in vitro capillary development. Lecture
Notes in Computer Science 3305, 425-434.

3. Turing, A. M. (1953) The Chemical Basis of Morphogenesis.
Philosophical Transactions of the Royal Society B 237, 37-72.

4. Merks, R. M. H. and Glazier, J. A. (2005) A cell-centered approach to
developmental biology. Physica A 352, 113-130.

5. Dormann, S. and Deutsch, A. (2002) Modeling of self-organized
avascular tumor growth with a hybrid cellular automaton. In Silico
Biology 2, 1-14.

6. dos Reis, A. N., Mombach, J. C. M., Walter, M., and de Avila, L. F.
(2003) The interplay between cell adhesion and environment rigidity in
the morphology of tumors. Physica A 322, 546-554.

7. Drasdo, D. and Hohme, S. (2003) Individual-based approaches to birth
and death in avascular tumors. Mathematical and Computer Modelling
37, 1163-1175.

8. Holm, E. A., Glazier, J. A., Srolovitz, D. J., and Grest, G. S.
(1991) Effects of Lattice Anisotropy and Temperature on Domain Growth in
the Two-Dimensional Potts Model. Physical Review A 43, 2662-2669.

9. Turner, S. and Sherratt, J. A. (2002) Intercellular adhesion and
cancer invasion: A discrete simulation using the extended Potts model.
Journal of Theoretical Biology 216, 85-100.

10. Drasdo, D. and Forgacs, G. (2000) Modeling the interplay of generic
and genetic mechanisms in cleavage, blastulation, and gastrulation.
Developmental Dynamics 219, 182-191.

11. Drasdo, D., Kree, R., and McCaskill, J. S. (1995) Monte-Carlo
approach to tissue-cell populations. Physical Review E 52,
6635-6657.

12. Longo, D., Peirce, S. M., Skalak, T. C., Davidson, L., Marsden, M.,
and Dzamba, B. (2004) Multicellular computer simulation of
morphogenesis: blastocoel roof thinning and matrix assembly in Xenopus
laevis. Developmental Biology 271, 210-222.

13. Collier, J. R., Monk, N. A. M., Maini, P. K., and Lewis, J. H.
(1996) Pattern formation by lateral inhibition with feedback: A
mathematical model of Delta-Notch intercellular signaling. Journal of
Theoretical Biology 183, 429-446.

14. Honda, H. and Mochizuki, A. (2002) Formation and maintenance of
distinctive cell patterns by coexpression of membrane-bound ligands and
their receptors. Developmental Dynamics 223, 180-192.

15. Moreira, J. and Deutsch, A. (2005) Pigment pattern formation in
zebrafish during late larval stages: A model based on local
interactions. Developmental Dynamics 232, 33-42.

16. Wearing, H. J., Owen, M. R., and Sherratt, J. A. (2000) Mathematical
modelling of juxtacrine patterning. Bulletin of Mathematical Biology
62, 293-320.

17. Zhdanov, V. P. and Kasemo, B. (2004) Simulation of the growth of
neurospheres. Europhysics Letters 68, 134-140.

18. Ambrosi, D., Gamba, A., and Serini, G. (2005) Cell directional
persistence and chemotaxis in vascular morphogenesis. Bulletin of
Mathematical Biology 67, 195-195.

19. Gamba, A., Ambrosi, D., Coniglio, A., de Candia, A., di Talia, S.,
Giraudo, E., Serini, G., Preziosi, L., and Bussolino, F. (2003)
Percolation, morphogenesis, and Burgers dynamics in blood vessels
formation. Physical Review Letters 90, 118101.

20. Novak, B., Toth, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. A.,
and Nasmyth, K. (1999) Finishing the cell cycle. Journal of Theoretical
Biology 199, 223-233.

21. Peirce, S. M., van Gieson, E. J., and Skalak, T. C. (2004)
Multicellular simulation predicts microvascular patterning and in
silico tissue assembly. FASEB Journal 18, 731-733.

22. Merks, R. M. H., Brodsky, S. V., Goligorksy, M. S., Newman, S. A.,
and Glazier, J. A. (2006) Cell elongation is key to in silico
replication of in vitro vasculogenesis and subsequent remodeling.
Developmental Biology 289, 44-54.

23. Merks, R. M. H. and Glazier, J. A. (2005) Contact-inhibited
chemotactic motility can drive both vasculogenesis and sprouting
angiogenesis. q-bio/0505033.

24. Kesmir, C. and de Boer., R. J. (2003) A spatial model of germinal
center reactions: cellular adhesion based sorting of B cells results in
efficient affinity maturation. Journal of Theoretical Biology 222,
9-22.

25. Meyer-Hermann, M., Deutsch, A., and Or-Guil, M. (2001) Recycling
probability and dynamical properties of germinal center reactions.
Journal of Theoretical Biology 210, 265-285.

26. Nguyen, B., Upadhyaya, A. van Oudenaarden, A., and Brenner, M. P.
(2004) Elastic instability in growing yeast colonies. Biophysical
Journal 86, 2740-2747.

27. Walther, T., Reinsch, H., Grosse, A., Ostermann, K., Deutsch, A.,
and Bley, T. (2004) Mathematical modeling of regulatory mechanisms in
yeast colony development. Journal of Theoretical Biology 229,
327-338.

28. Borner, U., Deutsch, A., Reichenbach, H., and Bar, M. (2002)
Rippling patterns in aggregates of myxobacteria arise from cell-cell
collisions. Physical Review Letters 89, 078101.

29. Bussemaker, H. J., Deutsch, A., and Geigant, E. (1997) Mean-field
analysis of a dynamical phase transition in a cellular automaton model
for collective motion. Physical Review Letters 78, 5018-5021.

30. Dormann, S., Deutsch, A., and Lawniczak, A. T. (2001) Fourier
analysis of Turing-like pattern formation in cellular automaton models.
Future Generation Computer Systems 17, 901-909.

31. Börner, U., Deutsch, A., Reichenbach, H., and Bär, M. (2002)
Rippling patterns in aggregates of myxobacteria arise from cell-cell
collisions. Physical Review Letters 89, 078101.

32. Zhdanov, V. P. and Kasemo, B. (2004) Simulation of the growth and
differentiation of stem cells on a heterogeneous scaffold. Physical
Chemistry Chemical Physics 6, 4347-4350.

33. Knewitz, M. A. and Mombach, J. C. (2006) Computer simulation of the
influence of cellular adhesion on the morphology of the interface
between tissues of proliferating and quiescent cells. Computers in
Biology and Medicine 36, 59-69.

34. Marée, A. F. M. and Hogeweg, P. (2001) How amoeboids self-organize
into a fruiting body: Multicellular coordination in Dictyostelium
discoideum. Proceedings of the National Academy of Sciences of the
USA 98, 3879-3883.

35. Marée, A. F. M. and Hogeweg, P. (2002) Modelling Dictyostelium
discoideum morphogenesis: the culmination. Bulletin of Mathematical
Biology 64, 327-353.

36. Marée, A. F. M., Panfilov, A. V., and Hogeweg, P. (1999) Migration
and thermotaxis of Dictyostelium discoideum slugs, a model study.
Journal of Theoretical Biology 199, 297-309.

37. Savill, N. J. and Hogeweg, P. (1997) Modelling morphogenesis: From
single cells to crawling slugs. Journal of Theoretical Biology
184, 229-235.

38. Hogeweg, P. (2000) Evolving mechanisms of morphogenesis: on the
interplay between differential adhesion and cell differentiation.
Journal of Theoretical Biology 203, 317-333.

39. Johnston, D. A. (1998) Thin animals. Journal of Physics A
31, 9405-9417.

40. Groenenboom, M. A. and Hogeweg, P. (2002) Space and the persistence
of male-killing endosymbionts in insect populations. Proceedings in
Biological Sciences 269, 2509-2518.

41. Groenenboom, M. A., Maree, A. F., and Hogeweg, P. (2005) The RNA
silencing pathway: the bits and pieces that matter. PLoS Computational
Biology 1, 155-165.

42. Kesmir, C., van Noort, V., de Boer, R. J., and Hogeweg, P. (2003)
Bioinformatic analysis of functional differences between the
immunoproteasome and the constitutive proteasome. Immunogenetics
55, 437-449.

43. Pagie, L. and Hogeweg, P. (2000) Individual- and population-based
diversity in restriction-modification systems. Bulletin of Mathematical
Biology 62, 759-774.

44. Silva, H. S. and Martins, M. L. (2003) A cellular automata model for
cell differentiation. Physica A 322, 555-566.

45. Zajac, M., Jones, G. L., and Glazier, J. A. (2000) Model of
convergent extension in animal morphogenesis. Physical Review Letters
85, 2022-2025.

46. Zajac, M., Jones, G. L., and Glazier, J. A. (2003) Simulating
convergent extension by way of anisotropic differential adhesion.
Journal of Theoretical Biology 222, 247-259.

47. Savill, N. J. and Sherratt, J. A. (2003) Control of epidermal stem
cell clusters by Notch-mediated lateral induction. Developmental
Biology 258, 141-153.

48. Mombach, J. C. M, de Almeida, R. M. C., Thomas, G. L., Upadhyaya,
A., and Glazier, J. A. (2001) Bursts and cavity formation in Hydra cells
aggregates: experiments and simulations. Physica A 297, 495-508.

49. Rieu, J. P., Upadhyaya, A., Glazier, J. A., Ouchi, N. B. and Sawada,
Y. (2000) Diffusion and deformations of single hydra cells in cellular
aggregates. Biophysical Journal 79, 1903-1914.

50. Mochizuki, A. (2002) Pattern formation of the cone mosaic in the
zebrafish retina: A cell rearrangement model. Journal of Theoretical
Biology 215, 345-361.

51. Takesue, A., Mochizuki, A., and Iwasa, Y. (1998)
Cell-differentiation rules that generate regular mosaic patterns:
Modelling motivated by cone mosaic formation in fish retina. Journal of
Theoretical Biology 194, 575-586.

52. Dallon, J., Sherratt, J., Maini, P. K., and Ferguson, M. (2000)
Biological implications of a discrete mathematical model for collagen
deposition and alignment in dermal wound repair. IMA Journal of
Mathematics Applied in Medicine and Biology 17, 379-393.

53. Maini, P. K., Olsen, L., and Sherratt, J. A. (2002) Mathematical
models for cell-matrix interactions during dermal wound healing.
International Journal of Bifurcations and Chaos 12, 2021-2029.

54. Kreft, J. U., Picioreanu, C., Wimpenny, J. W. T., and van
Loosdrecht, M. C. M. (2001) Individual-based modelling of biofilms.
Microbiology 147, 2897-2912.

55. Picioreanu, C., van Loosdrecht, M. C. M., and Heijnen, J. J. (2001)
Two-dimensional model of biofilm detachment caused by internal stress
from liquid flow. Biotechnology and Bioengineering 72, 205-218.

56. van Loosdrecht, M. C. M., Heijnen, J. J., Eberl, H., Kreft, J., and
Picioreanu, C. (2002) Mathematical modelling of biofilm structures.
Antonie Van Leeuwenhoek International Journal of General and Molecular
Microbiology 81, 245-256.

57. Popławski, N. J., Shirinifard, A., Swat, M., and Glazier, J. A.
(2008) Simulations of single-species bacterial-biofilm growth using the
Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment.
Mathematical Biosciences and Engineering 5, 355-388.

58. Chaturvedi, R., Huang, C., Izaguirre, J. A., Newman, S. A., Glazier,
J. A., Alber, M. S. (2004) A hybrid discrete-continuum model for 3-D
skeletogenesis of the vertebrate limb. Lecture Notes in Computer
Science 3305, 543-552.

59. Popławski, N. J., Swat, M., Gens, J. S., and Glazier, J. A. (2007)
Adhesion between cells, diffusion of growth factors, and elasticity of
the AER produce the paddle shape of the chick limb. Physica A 373,
521-532.

60. Glazier, J. A. and Weaire, D. (1992) The Kinetics of Cellular
Patterns. Journal of Physics: Condensed Matter 4, 1867-1896.

61. Glazier, J. A. (1993) Grain Growth in Three Dimensions Depends on
Grain Topology. Physical Review Letters 70, 2170-2173.

62. Glazier, J. A., Grest, G. S., and Anderson, M. P. (1990) Ideal
Two-Dimensional Grain Growth. In Simulation and Theory of Evolving
Microstructures, M. P. Anderson and A. D. Rollett, editors. The
Minerals, Metals and Materials Society, Warrendale, PA, pp. 41-54.

63. Glazier, J. A., Anderson, M. P., and Grest, G. S. (1990) Coarsening
in the Two-Dimensional Soap Froth and the Large-Q Potts Model: A
Detailed Comparison. Philosophical Magazine B 62, 615-637.

64. Grest, G. S., Glazier, J. A., Anderson, M. P., Holm, E. A., and
Srolovitz, D. J. (1992) Coarsening in Two-Dimensional Soap Froths and
the Large-Q Potts Model. Materials Research Society Symposium 237,
101-112.

65. Jiang, Y. and Glazier, J. A. (1996) Extended Large-Q Potts Model
Simulation of Foam Drainage. Philosophical Magazine Letters 74,
119-128.

66. Jiang, Y., Levine, H., and Glazier, J. A. (1998) Possible
Cooperation of Differential Adhesion and Chemotaxis in Mound Formation
of Dictyostelium. Biophysical Journal 75, 2615-2625.

67. Jiang, Y., Mombach, J. C. M., and Glazier, J. A. (1995) Grain Growth
from Homogeneous Initial Conditions: Anomalous Grain Growth and Special
Scaling States. Physical Review E 52, 3333-3336.

68. Jiang, Y., Swart, P. J., Saxena, A., Asipauskas, M., and Glazier, J.
A. (1999) Hysteresis and Avalanches in Two-Dimensional Foam Rheology
Simulations. Physical Review E 59, 5819-5832.

69. Ling, S., Anderson, M. P., Grest, G. S., and Glazier, J. A. (1992)
Comparison of Soap Froth and Simulation of Large-Q Potts Model.
Materials Science Forum 94-96, 39-47.

70. Mombach, J. C. M. (2000) Universality of the threshold in the
dynamics of biological cell sorting. Physica A 276, 391-400.

71. Weaire, D. and Glazier, J. A. (1992) Modelling Grain Growth and Soap
Froth Coarsening: Past, Present and Future. Materials Science Forum
94-96, 27-39.

72. Weaire, D., Bolton, F., Molho, P., and Glazier, J. A. (1991)
Investigation of an Elementary Model for Magnetic Froth. Journal of
Physics: Condensed Matter 3, 2101-2113.

73. Glazer, J. A., Balter, A., Popławski, N. (2007) Magnetization to
Morphogenesis: A Brief History of the Glazier-Graner-Hogeweg Model. In
Single-Cell-Based Models in Biology and Medicine. Anderson, A. R. A.,
Chaplain, M. A. J., and Rejniak, K. A., editors. Birkhauser Verlag
Basel, Switzerland. pp. 79-106.

74. Walther, T., Reinsch, H., Ostermann, K., Deutsch, A. and Bley, T.
(2005) Coordinated growth of yeast colonies: experimental and
mathematical analysis of possible regulatory mechanisms. Engineering
Life Sciences 5, 115-133.

75. Keller, E. F. and Segel., L. A. (1971) Model for chemotaxis.
Journal of Theoretical Biology 30, 225-234.

76. Glazier, J. A. and Upadhyaya, A. (1998) First Steps Towards a
Comprehensive Model of Tissues, or: A Physicist Looks at Development. In
Dynamical Networks in Physics and Biology: At the Frontier of Physics
and Biology, D. Beysens and G. Forgacs editors. EDP Sciences/Springer
Verlag, Berlin, pp. 149-160.

77. Glazier, J. A. and Graner, F. (1993) Simulation of the differential
adhesion driven rearrangement of biological cells. Physical Review E
47, 2128-2154.

78. Glazier, J. A. (1993) Cellular Patterns. Bussei Kenkyu 58,
608-612.

79. Glazier, J. A. (1996) Thermodynamics of Cell Sorting. Bussei
Kenkyu 65, 691-700.

80. Glazier, J. A., Raphael, R. C., Graner, F., and Sawada, Y. (1995)
The Energetics of Cell Sorting in Three Dimensions. In Interplay of
Genetic and Physical Processes in the Development of Biological Form,
D. Beysens, G. Forgacs, F. Gaill, editors. World Scientific Publishing
Company, Singapore, pp. 54-66.

81. Graner, F. and Glazier, J. A. (1992) Simulation of biological cell
sorting using a 2-dimensional extended Potts model. Physical Review
Letters 69, 2013-2016.

82. Mombach, J. C. M and Glazier, J. A. (1996) Single Cell Motion in
Aggregates of Embryonic Cells. Physical Review Letters 76,
3032-3035.

83. Mombach, J. C. M., Glazier, J. A., Raphael, R. C., and Zajac, M.
(1995) Quantitative comparison between differential adhesion models and
cell sorting in the presence and absence of fluctuations. Physical
Review Letters 75, 2244-2247.

84. Cipra, B. A. (1987) An Introduction to the Ising-Model. American
Mathematical Monthly 94, 937-959.

85. Metropolis, N., Rosenbluth, A., Rosenbluth, M. N., Teller, A. H.,
and Teller, E. (1953) Equation of state calculations by fast computing
machines. Journal of Chemical Physics 21, 1087-1092.

86. Forgacs, G. and Newman, S. A. (2005). Biological Physics of the
Developing Embryo. Cambridge Univ. Press, Cambridge.

87. Alber, M. S., Kiskowski, M. A., Glazier, J. A., and Jiang, Y. On
cellular automation approaches to modeling biological cells. In
Mathematical Systems Theory in Biology, Communication and Finance. J.
Rosenthal, and D. S. Gilliam, editors. Springer-Verlag, New York, pp.
1-40.

88. Alber, M. S., Jiang, Y., and Kiskowski, M. A. (2004) Lattice gas
cellular automation model for rippling and aggregation in
myxobacteria. Physica D 191, 343-358.

89. Novak, B., Toth, A., Csikasz-Nagy, A., Gyorffy, B., Tyson, J. A.,
and Nasmyth, K. (1999) Finishing the cell cycle. Journal of
Theoretical Biology 199, 223-233.

90. Upadhyaya, A., Rieu, J. P., Glazier, J. A., and Sawada, Y. (2001)
Anomalous Diffusion in Two-Dimensional Hydra Cell Aggregates. Physica
A 293, 549-558.

91. Cickovski, T., Aras, K., Alber, M. S., Izaguirre, J. A., Swat, M.,
Glazier, J. A., Merks, R. M. H., Glimm, T., Hentschel, H. G. E., Newman,
S. A. (2007) From genes to organisms via the cell: a problem-solving
environment for multicellular development. Computers in Science and
Engineering 9, 50-60.

92. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland,
J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S. A.,
and Glazier, J. A. (2004) CompuCell, a multi-model framework for
simulation of morphogenesis. Bioinformatics 20, 1129-1137.

93. Armstrong, P. B. and Armstrong, M. T. (1984) A role for fibronectin
in cell sorting out. Journal of Cell Science 69, 179-197.

94. Armstrong, P. B. and Parenti, D. (1972) Cell sorting in the presence
of cytochalasin B. Journal of Cell Science 55, 542-553.

95. Glazier, J. A. and Graner, F. (1993) Simulation of the differential
adhesion driven rearrangement of biological cells. Physical Review E
47, 2128-2154.

96. Glazier, J. A. and Graner, F. (1992) Simulation of biological cell
sorting using a two-dimensional extended Potts model. Physical Review
Letters 69, 2013-2016.

97. Ward, P. A., Lepow, I. H., and Newman, L. J. (1968) Bacterial
factors chemotactic for polymorphonuclear leukocytes. American Journal
of Pathology 52, 725-736.

98. Lutz, M. (1999) Learning Python. Sebastopol, CA: O’Reilly &
Associates, Inc.

99. Balter, A. I., Glazier, J. A., and Perry, R. (2008) Probing
soap-film friction with two-phase foam flow. Philosophical Magazine,
submitted.

100. Dvorak, P., Dvorakova, D., and Hampl, A. (2006) Fibroblast growth
factor signaling in embryonic and cancer stem cells. FEBS Letters
580, 2869-2287.

 Index

Index

 AdhesionFlex Plugin

AdhesionFlex Plugin

AdhesionFlex offers a very flexible way to define adhesion between cells. It
allows setting individual adhesivity properties for each cell. Users can
use either CC3DML syntax or Python scripting to initialize adhesion
molecule density for each cell. In addition, Medium can also carry its
own adhesion molecules. We use the following formula to calculate
adhesion energy in AdhesionFlex plugin:

\begin{eqnarray}
 E_{adhesion} = \sum_{i,j,neighbors} \left (- \sum_{m,n}k_{mn}F\left (N_{m}\left (i \right), N_{n} \left(j \right) \right) \right)\left (1-\delta_{\sigma(i), \sigma(j)} \right)
\end{eqnarray}
where indexes i, j label pixels, \(- \sum_{m,n}k_{mn}F\left (N_{m}\left (i \right), N_{n} \left(j \right) \right)\)
denotes contact energy between cell types \(\sigma(i)\) and \(\sigma(j)\) and indexes m , n
label adhesion molecules in cells composed of pixels i and j respectively. F
denotes user-defined function of \(N_m\) and \(N_n\).
Although this may look a bit complex, the basic idea is simple: each
cell has certain number of adhesion molecules on its surface. When cells touch
each other the resultant energy is simply a “product of interactions” of
adhesion molecules from one cell with adhesion molecules from another cell. The CC3DML
syntax for this plugin is given below:

<Plugin Name="AdhesionFlex">
 <AdhesionMolecule Molecule="NCad"/>
 <AdhesionMolecule Molecule="NCam"/>
 <AdhesionMolecule Molecule="Int"/>
 <AdhesionMoleculeDensity CellType="Cell1" Molecule="NCad" Density="6.1"/>
 <AdhesionMoleculeDensity CellType="Cell1" Molecule="NCam" Density="4.1"/>
 <AdhesionMoleculeDensity CellType="Cell1" Molecule="Int" Density="8.1"/>
 <AdhesionMoleculeDensity CellType="Medium" Molecule="Int" Density="3.1"/>
 <AdhesionMoleculeDensity CellType="Cell2" Molecule="NCad" Density="2.1"/>
 <AdhesionMoleculeDensity CellType="Cell2" Molecule="NCam" Density="3.1"/>

 <BindingFormula Name="Binary">
 <Formula> min(Molecule1,Molecule2)</Formula>
 <Variables>
 <AdhesionInteractionMatrix>
 <BindingParameter Molecule1="NCad" Molecule2="NCad">-1.0</BindingParameter>
 <BindingParameter Molecule1="NCam" Molecule2="NCam">2.0</BindingParameter>
 <BindingParameter Molecule1="NCad" Molecule2="NCam">-10.0</BindingParameter>
 <BindingParameter Molecule1="Int" Molecule2="Int">-10.0</BindingParameter>
 </AdhesionInteractionMatrix>
 </Variables>
 </BindingFormula>

 <NeighborOrder>2</NeighborOrder>
</Plugin>

\(k_{mn}\) matrix is specified within the AdhesionInteractionMatrix
tag – the elements are listed using BindingParameter tags. The
AdhesionMoleculeDensity tag specifies initial concentration of adhesion
molecules. Even if you are going to modify those from Python you are still required to specify the
names of adhesion molecules and associate them with appropriate cell
types. Failure to do so may result in simulation crash or undefined
behaviors. The user-defined function *F* is specified using Formula tag
where the arguments of the function are called Molecule1 and Molecule2 .
The syntax has to follow syntax of the muParser -
https://beltoforion.de/en/muparser/features.php#idDef1 .

Note

Using more complex formulas with muParser requires special CDATA syntax. Please check muParser for more details.

 AdvectionDiffusionSolver.

AdvectionDiffusionSolver.

Note

This is an experimental module and was not fully curated.

 BlobInitializer Steppable

BlobInitializer Steppable

BlobInitializer steppable is used to lay out circular blob of cells on the lattice.

An example syntax where we create one circular region of cells in the lattice is presented below:

<Steppable Type="BlobInitializer">
 <Region>
 <Gap>0</Gap>
 <Width>5</Width>
 <Radius>40</Radius>
 <Center x="100" y="100" z="0"/>
 <Types>Condensing,NonCondensing</Types>
 </Region>
</Steppable>

Similarly as for the UniformFieldInitializer users can define many
regions each of which is a blob of a particular center point, radius and
list of cell types that will be assigned to cells forming the blob.
Listing types in the <Types> tag follows same rules as in the
UniformInitializer.

Note

Original (and deprecated) syntax of this plugin looks as follows:

<Steppable Type="BlobInitializer">
 <Gap>0</Gap>
 <Width>5</Width>
 <CellSortInit>yes</CellSortInit>
 <Radius>40</Radius>
</Steppable>

The blob is centered in the middle of th lattice and has radius given by
<Radius> parameter. All cells are initially squares (or cubes in 3D) where
<Width> determines the length of the cube or square side and <Gap>
determines space between squares or cubes. <CellSortInit> tag and value
yes is used to initialize cells randomly with type id being either 1 or
2 . Otherwise all cells will have type id 1. This can be easily modified
in Python .

 Calculating shape constraint of a cell – elongation term

Calculating shape constraint of a cell – elongation term

The shape of single cell immersed in medium and not subject to too
drastic surface or surface constraints will be spherical (circular in
2D). However in certain situation we may want to use cells which are
elongated along one of their body axes. To facilitate this we can place
constraint on principal lengths of cell. In 2D it is sufficient to
constrain one of the principal lengths of cell how ever in 3D we need
to constrain 2 out of 3 principal lengths. Our first task is to
diagonalize inertia tensor (i.e. find a coordinate frame transformation
which brings inertia tensor to a diagonal form)

Diagonalizing inertia tensor

We will consider here more difficult 3D case. The 2D case is described
in detail in M.Zajac, G.L.jones, J,A,Glazier “Simulating convergent
extension by way of anisotropic differential adhesion” Journal of
Theoretical Biology 222 (2003) 247–259.

In order to diagonalize inertia tensor we need to solve eigenvalue
equation:

\begin{eqnarray}
 det(I-\lambda) = 0
\end{eqnarray}
or in full form

\begin{eqnarray}

 0 = \begin{vmatrix}
 \sum_i y_i^2+z_i^2 - \lambda & -\sum_i x_i y_i & -\sum_i x_i z_i \\
 -\sum_i x_i y_i & \sum_i x_i^2+z_i^2 - \lambda & -\sum_i y_i z_i \\
 -\sum_i x_i z_i & -\sum_i y_i z_i & \sum_i x_i^2+y_i^2 - \lambda \\
 \end{vmatrix} = \begin{vmatrix}
 I_{xx} - \lambda & I_{xy} & I_xz \\
 I_{xy} & I_{yy} - \lambda & I_yz \\
 I_{xz} & I_{yz} & I_zz - \lambda
 \end{vmatrix}
\end{eqnarray}
The eigenvalue equation will be in the form of 3rd order
polynomial. The roots of it are guaranteed to be real. The polynomial
itself can be found either by explicit derivation, using symbolic
calculation or simply in Wikipedia (http://en.wikipedia.org/wiki/Eigenvalue_algorithm)

[image: eigenvalue_formula_wiki]

so in our case the eigenvalue equation takes the form:

\begin{eqnarray}
 -L^2+L^2(I_{xx}+I_{yy}+I_{zz})+L(I_{xy}^2+I_{yz}^2+I_{xz}^2-I_{xx}I_{yy}-I_{yy}I_{zz}-I_{xx}I_{zz}) \\
 +I_{xx}I_{yy}I_{zz} - I_{xx}I_{yz}^2 -I_{yy}I_{zz}^2 I_{zz}I_{xy}^2 + 2I_{xy}I_{yz}I_{zx}
\end{eqnarray}
This equation can be solved analytically, again we may use Wikipedia (
http://en.wikipedia.org/wiki/Cubic_function)

Now, the eigenvalues found that way are principal moments of inertia of
a cell. That is they are components of inertia tensor in a coordinate
frame rotated in such a way that off-diagonal elements of inertia tensor
are 0:

I = \begin{eqnarray}
 \begin{vmatrix}
 I_{xx} & 0 & 0 \\
 0 & I_{yy} & 0 \\
 0 & 0 & I_zz
 \end{vmatrix}
\end{eqnarray}
In our cell shape constraint we will want to obtain ellipsoidal cells.
Therefore the target tensor of inertia for the cell should be tensor if
inertia for ellipsoid:

I = \begin{eqnarray}
 \begin{vmatrix}
 \frac{1}{5}(b^2+c^2) & 0 & 0 \\
 0 & \frac{1}{5}(a^2+c^2) & 0 \\
 0 & 0 & \frac{1}{5}(a^2+b^2)
 \end{vmatrix}
\end{eqnarray}
where a, b, c are parameters describing the surface of an ellipsoid:

\begin{eqnarray}
 \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\end{eqnarray}
In other words a, b, c are half lengths of principal axes (they are
analogues of circle’s radius).

Now we can determine semi axes lengths in terms of principal moments of
inertia by inverting the following set of equations:

\begin{eqnarray}
 I_{xx} = \frac{1}{5}(b^2+c^2) \\
 I_{yy} = \frac{1}{5}(a^2+c^2) \\
 I_{zz} = \frac{1}{5}(a^2+b^2)
\end{eqnarray}
Once we have calculated semiaxes lengths in terms of moments of inertia
we can plug –in actual numbers for moment of inertia (the ones for
actual cell) and obtain lengths of semiexes. Next we apply quadratic
constraint on largest (semimajor) and smallest (seminimor axes). This is
what elongation plugin does.

 Managing CompuCell3D simulations (CC3D project files)

Managing CompuCell3D simulations (CC3D project files)

Until version 3.6.0 CompuCell3D simulations were stored as a combination
of Python, CC3DML (XML), and PIF files. Starting with version
3.6.0 we introduced new way of managing CC3D simulations by enforcing
that a single CC3D simulation is stored in a folder containing .cc3d
project file describing simulation resources (.cc3d is in fact XML),
such as CC3DML configuration file, Python scripts, PIF files,
Concentration files etc…* and a directory called Simulation where all
the resources reside. The structure of the new-style CC3D simulation is
presented in the diagram below:

->CellsortDemo

CellsortDemo.cc3d

->Simulation

Cellsort.xml

Cellsort.py

CellsortSteppables.py

Cellsort.piff

FGF.txt

Bold fonts denote folders. The benefit of using CC3D project files
instead of loosely related files are as follows:

	Previously users had to guess which file needs to be open in CC3D –
CC3DML or Python. While in a well written simulation one can link the
files together in a way that when user opens either one the
simulation would work but, nevertheless, such approach was clumsy and
unreliable. Starting with 3.6.0 users open .cc3d file and they don’t
have to stress out that CompUCell3D will complain with error message.

Warning

The only way to load simulation in CompuCell3D is to use .cc3d project. We no longer
support previous ways of opening simulations

 CellType Plugin

CellType Plugin

An example of the plugin that stores user assigned data that is used to
configure simulation before it is run is a CellType Plugin. This plugin
is responsible for defining cell types and storing cell type
information. It is a basic plugin used by virtually every CompuCell
simulation. The syntax is straight forward as can be seen in the example
below:

<Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Fluid" TypeId="1"/>
 <CellType TypeName="Wall" TypeId="2" Freeze=""/>
</Plugin>

Here we have defined three cell types that will be present in the
simulation: Medium, Fluid, Wall. Notice that we assign a number – TypeId
– to every cell type. It is strongly recommended that TypeId’s are
consecutive positive integers (e.g. 0,1,2,3...). Medium is traditionally
given TypeId=0 and we recommend that you keep this convention.

Note

Important: Every CC3D simulation must define CellType Plugin and
include at least Medium specification.

 CenterOfMass Plugin

CenterOfMass Plugin

CenterOfMass plugin monitors changes n the lattice and updates centroids of the
cell:

\begin{align*}
 x_{CM}^{centroid} &= \sum_{i}x_{i} \\
 y_{CM}^{centroid} &= \sum_{i}y_{i} \\
 z_{CM}^{centroid} &= \sum_{i}z_{i}
\end{align*}
where i denotes pixels belonging to a given cell. To obtain
coordinates of a center of mass of a given cell we divide centroids by
cell volume:

\begin{align*}
 x_{CM} &= \frac{x_{CM}^{centroid}}{V} \\
 y_{CM} &= \frac{y_{CM}^{centroid}}{V} \\
 z_{CM} &= \frac{z_{CM}^{centroid}}{V}
\end{align*}
This plugin is aware of boundary conditions and centroids are calculated
properly regardless which boundary conditions are used. The CC3DML
syntax is very simple:

<Plugin Name="CenterOfMass"/>

To access center of mass coordinates from Python we use the following
syntax:

print('x-component of COM is:', cell.xCOM)
print ('y-component of COM is:', cell.yCOM)
print ('z-component of COM is:', cell.zCOM)

Warning

Center of mass parameters in Python are read only. Any
attempt to modify them will likely mess up the simulation.

 Chemotaxis

Chemotaxis

Chemotaxis plugin, is used to simulate chemotaxis
of cells. For every pixel copy, this plugin calculates change of energy
associated with pixel move. There are several methods to define a change
in energy due to chemotaxis. By default we define a chemotaxis using the
following formula:

\begin{eqnarray}
 \Delta E_{chem} = -\lambda\left (c(x_{destination}) - c(x_{source}) \right)
\end{eqnarray}
where \(c(x_{source})\) and \(c(x_{destination})\) denote chemical concentration at
the pixel-copy-source and pixel-copy-destination pixel, respectively.

The body of the Chemotaxis plugin description contains sections called
ChemicalField. In this section we tell CompuCell3D which module contains
chemical field that we wish to use for chemotaxis. In our case it is
FlexibleDiffusionSolverFE. Next we specify the name of the field - FGF.
Subsequently, we specify lambda for each cell type so that cells of
different type may respond differently to a given chemical. In
particular types not listed will not respond to chemotaxis at all.

Occasionally we may want to use different formula for the chemotaxis
than the one presented above. Current version of CompCell3D supports the
following definitions of change in chemotaxis energy (Saturation and
SaturationLinear respectively):

\begin{eqnarray}
 \Delta E_{chem} = -\lambda \left [\frac{c(x_{destination})}{s+c(x_{destination})} - \frac{c(x_{source})}{s+c(x_{source})} \right]
\end{eqnarray}
or

\begin{eqnarray}
 \Delta E_{chem} = -\lambda \left [\frac{c(x_{destination})}{sc(x_{destination})+1} - \frac{c(x_{source})}{sc(x_{source})+1} \right]
\end{eqnarray}
where s denotes saturation constant. To use first of the above
formulas we set the value of the saturation coefficient:

<Plugin Name="Chemotaxis">
 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
 <ChemotaxisByType Type="Amoeba" Lambda="0"/>
 <ChemotaxisByType Type="Bacteria" Lambda="2000000" SaturationCoef="1"/>
 </ChemicalField>
</Plugin>

Notice that this only requires small change in line where you previously
specified only lambda.

<ChemotaxisByType Type="Bacteria" Lambda="2000000" SaturationCoef="1"/>

To use second of the above formulas use SaturationLinearCoef instead of
SaturationCoef:

<Plugin Name="Chemotaxis">
 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
 <ChemotaxisByType Type="Amoeba" Lambda="0"/>
 <ChemotaxisByType Type="Bacteria" Lambda="2000000" SaturationLinearCoef="1"/>
 </ChemicalField>
</Plugin>

The lambda value specified for each cell type can also be scaled using the
LogScaled formula according to the concentration of the field at the center of mass of the
chemotaxing cell \(c_{CM}\),

\begin{eqnarray}
 \Delta E_{chem} = -\frac{\lambda}{s + c_{CM}} \left (c(x_{destination}) - c(x_{source}) \right)
\end{eqnarray}
The LogScaled formula is commonly used to mitigate excessive forces on cells
in fields that vary over several orders of magnitude, and can be selected
by setting the value of \(s\) with the attribute LogScaledCoef like as follows,

<ChemotaxisByType Type="Amoeba" Lambda="100" LogScaledCoef="1"/>

Sometimes it is desirable to have chemotaxis at the interface
between only certain types of cells and not between other
cell-type-pairs. In such a case we augment ChemotaxisByType element with
the following attribute:

<ChemotaxisByType Type="Amoeba" Lambda="100 "ChemotactTowards="Medium"/>

This will cause that the change in chemotaxis energy will be non-zero
only for those pixel copy attempts that happen between pixels belonging
to Amoeba and Medium.

Note

The term ChemotactTowards means “chemotax at the interface between”

 Calculating center of mass when using periodic boundary conditions.

Calculating center of mass when using periodic boundary conditions.

When you are running calculation with periodic boundary condition you
may end up with situation like in the figure below:

[image: periodic_bc_com]

Figure 6 A connected cell in the lattice edge area – periodic boundary conditions are applied

Clearly, what happens is that simply connected cell is wrapped around the
lattice edge so part of it is in the region of high values of x
coordinate and the other is in the region where x coordinates have low
values. Consequently, a naïve calculation of center of mass position
according to:

\begin{eqnarray}
 x_{COM} = \frac{\sum_i x_i}{V}
\end{eqnarray}
or in vector form:

\begin{eqnarray}
 \vec{r}_{COM} = \frac{\sum_i \vec{r}_i}{V}
\end{eqnarray}
would result in being somewhere in the middle of the lattice and
obviously outside the cell. A better procedure could be as follows:

Before calculating center of mass when new pixel is added or lost we
“shift” a cell and new pixel (gained or lost)to the middle of the
lattice do calculations “in the middle of the lattice” and shift back.
Now if after shifting back it turns out that center of mass of a cell
lies outside lattice position it in the center of mass by applygin a
shift equal to the length of the lattice and whose direction should be
such that the center of mass of the cell ends up inside the lattice
(there is only one such shift and it might be be equal to zero vector).

This is how we do it using mathematical formulas:

\begin{eqnarray}
 \vec{s} = \vec{r}_{COM} - \vec{c}
\end{eqnarray}
First we define shift vector \(\vec{s}\) as a vector difference between vector
pointing to center of mass of the cell \(\vec{r}_{COM}\) and vector pointing to
(approximately) the middle of the lattice \(\vec{c}\).

Next we shift cell to the middle of the lattice using :

\begin{eqnarray}
 \vec{r'}_{COM} = \vec{r}_{COM} - \vec{s}
\end{eqnarray}
where \(\vec{r'}_{COM}\) denotes center of mass position of a cell after shifting but
before adding or subtracting a pixel.

Next we take into account the new pixel (either gained or lost) and
calculate center of mass position (for the shifted cell):

\begin{eqnarray}
 \vec{r'}_{COM}^{new} = \frac{\vec{r'}_{COM}V + \vec{r}_i}{V+1}
\end{eqnarray}
Above we have assumed that we are adding one pixel.

Now all that we need to do is to shift back \(\vec{r'}_{COM}^{new}\) by same vector \(\vec{s}\) that brought
cell to (approximately) center of the lattice:

\begin{eqnarray}
 \vec{r}_{COM}^{new} = \vec{r'}_{COM}^{new} + \vec{s}
\end{eqnarray}
We are almost done. We still have to check if \(\vec{r'}_{COM}^{new}\) is inside the lattice. If
this is not the case we need to shift it back to the lattice but now we
are allowed to use only a vector \(\vec{P}\) whose components are multiples of
lattice dimensions (and we can safely restrict to +1 and -1 multiples of
the lattice dimensions) . For example we may have:

\begin{eqnarray}
 \vec{P} = (x_{max}, -y_{max}, 0)
\end{eqnarray}
where \(\vec{x}_{max}\), \(\vec{y}_{max}\), \(\vec{z}_{max}\) are dimensions of the lattice.

There is no cheating here. In the lattice with periodic boundary
conditions you are allowed to shift point coordinates a vector whose
components are multiples of lattice dimensions.

All we need to do is to examine new center of mass position and form
suitable vector \(\vec{P}\).

 Command line options of CompuCell3D

Command line options of CompuCell3D

Although most users run CC3D using Player GUI sometimes it is very
convenient to run CC3D using command line options. CC3D allows to invoke
Player directly from command line which is convenient because if saves
several clicks and if you run many simulations this might be quite
convenient.

Remark: On Windows we use .bat extension for run scripts and on
Linux/OSX it is .sh. Otherwise all the material in this section applies
to all the platforms.

CompuCell3D Player Command Line Options

The command line options for running simulation with the player are as
follows:

compucell3d.bat [options]

Options are:

-i <simulation file> - users specify .cc3d simulation file they want to run.

-s <screenshotDescriptionFileName> - name of the file containing
description of screenshots to be taken with the simulation. Usually this
file is prepared using Player by switching to different views, clickin
camera button and saving screenshot description file from the Player
File menu.

-o <customScreenshotDirectoryName> - allows users to specify where
screenshots will be written. Overrides default settings.

--noOutput - instructs CC3D not to store any screenshots. Overrides
Player settings.

--exitWhenDone - instructs CC3D to exit at the end of simulation.
Overrides Player settings.

-h, --help - prints command line usage on the screen

Example command may look like (windows):

compucell3d.bat –i Demos\Models\cellsort\cellsort_2D\cellsort_2d.cc3d --noOutput

or on linux:

compucell3d.sh –i Demos/Models/cellsort/cellsort_2D/cellsort_2d.cc3d --noOutput

and OSX:

compucell3d.command –i Demos/Models/cellsort/cellsort_2D/cellsort_2d.cc3d --noOutput

Running CompuCell3D in a GUI-Less Mode - Command Line Options.

Sometimes when you want to run CC3D on a cluster you will have to use
runScript.bat which allows running CC3D simulations without invoking
GUI. However, all the screenshots will be still stored.

Remark: current version of this script does not handle properly
relative paths so it has to be run from the installation directory of
CC3D i.e. you have to cd into this directory prior to runnit
runScript.bat. Another solution is to use full paths.

The output of this script is in the form of vtk files which can be
subsequently replayed in the Player (and one can take screenshots then).
By default all fields present in the simulation are stored in the vtk
file. If users want to remove some of the fields from being stored in
the vtk format they have to pass this information in the Python script:

CompuCellSetup.doNotOutputField(_fieldName)

Storing entire fields (as opposed to storing screenshots) preserves
exact snapshots of the simulation and allows result postprocessing. In
addition to the vtk files runScript stores lattice description file with
.dml` extension which users open in the Player (File->Open Lattice Description Summary File…)
if they want to reply generated vtk files.

The format of the command (windows):

runScript.bat [options]

linux:

runScript.sh [options]

OSX:

runScript.command [options]

The command line options for runScript.bat are as follows:

-i <simulation file> - users specify .cc3d simulation file they want to run.

-c <outputFileCoreName> - allows users to specify core name for the vtk
files. The default name for vtk files is Step

-o <customVtkDirectoryName> - allows users to specify where vtk files
and the .dml file will be written. Overrides default settings

-f <frequency> or –outputFrequency=<frequency> - allows to specify how
often vtk files are stored to the disk. Those files tend to be quite
large for bigger simulations so storing them every single MCS (default
setting) slows down simulation considerably and also uses a lot of disk
space.

--noOutput - instructs CC3D not to store any output. This option makes
little sense in most cases.

-h, --help - prints command line usage on the screen

Example command may look as follows(windows):

runScript.bat –i Demos\CompuCellPythonTutorial\InfoPrinter\cellsort_2D_info_printer.cc3d –f 10 –o Demos\CompuCellPythonTutorial\InfoPrinter\screenshots –c infoPrinter

linux:

runScript.sh –i Demos/CompuCellPythonTutorial/InfoPrinter/cellsort_2D_info_printer.cc3d –f 10 –o Demos/CompuCellPythonTutorial/InfoPrinter/screenshots –c infoPrinter

osx:

runScript.command –i Demos/CompuCellPythonTutorial/InfoPrinter/cellsort_2D_info_printer.cc3d –f 10 –o Demos/CompuCellPythonTutorial/InfoPrinter/screenshots –c infoPrinter

 Compartmentalized cells. ContactInternal Plugin

Compartmentalized cells. ContactInternal Plugin

Calculating contact energies between compartmentalized cells is
analogous to the non-compartmentalized case. The energy expression takes
the following form:

\begin{eqnarray}

 E_{adhesion} = \sum_{i,j,neighbors} J\left (\sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j}) \right)

\end{eqnarray}
where i and j denote pixels , σ(µ,ν) denotes a cell
type of a cell with cluster id µ and cell id ν . In compartmental
cell models a cell is a collection of subcells. Each subcell has a
unique id ν (cell id). In addition to that each subcell will have
additional attribute, a cluster id (µ) that determines to which cluster of
subcells a given subcell belongs. Tthink of a cluster as a cell with
nonhomogenous cytoskeleton. So a cluster corresponds to a biological cell and
subcells (or compartments) represents parts of a cell e.g. a nucleus. The core
idea here is to have different contact
energies between subcells belonging to the same cluster and different
energies for cells belonging to different clusters. Technically subcells
of a cluster are “regular” CompuCell3D cells. By giving them an extra
attribute cluster id ((µ) we can introduce a concept of compartmental cells.
In our convention σ(0,0) denotes medium

[image: compartments]

Figure 2. Two compartmentalized cells (cluster id \(\mu=1\) and cluster id \(\mu=2\)).
Compartmentalized cell \(\mu=1\) consists of subcells with cell id \(\nu=1,2,3\) and compartmentalized cell
\(\mu=2\) consists of subcells with cell id \(\nu=4,5,6\)

Introduction of cluster id and cell id are essential for the definition
of \(J\left (\sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j}) \right)\)

Indeed:

 \begin{cases}
 J\left (\sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j}) \right) = J^{external}\left (\sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j}) \right) & \text{ if } \mu_i \neq \mu_j \\
 J\left (\sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j}) \right) = J^{internal}\left (\sigma (\mu_{i},\nu_{i}),\sigma (\mu_{j},\nu_{j}) \right) & \text{ if } \mu_i = \mu_j
 \end{cases}
As we can see from above there are two hierarchies of contact energies –
external and internal. To describe adhesive interactions between
different compartmentalized cells we use two plugins: Contact and
ContactInternal. Contact plugin calculates energy between two cells
belonging to different clusters and ContactInternal calculates energies
between cells belonging to the same cluster. An example syntax is shown
below

<Plugin Name="Contact">

 <Energy Type1="Base" Type2="Base">0</Energy>
 <Energy Type1="Top" Type2="Base">25</Energy>
 <Energy Type1="Center" Type2="Base">30</Energy>
 <Energy Type1="Bottom" Type2="Base">-2</Energy>
 <Energy Type1="Side1" Type2="Base">25</Energy>
 <Energy Type1="Side2" Type2="Base">25</Energy>
 <Energy Type1="Medium" Type2="Base">0</Energy>

 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <Energy Type1="Top" Type2="Medium">30</Energy>
 <Energy Type1="Bottom" Type2="Medium">20</Energy>
 <Energy Type1="Side1" Type2="Medium">30</Energy>
 <Energy Type1="Side2" Type2="Medium">30</Energy>
 <Energy Type1="Center" Type2="Medium">45</Energy>

 <Energy Type1="Top" Type2="Top">2</Energy>
 <Energy Type1="Top" Type2="Bottom">100</Energy>
 <Energy Type1="Top" Type2="Side1">25</Energy>
 <Energy Type1="Top" Type2="Side2">25</Energy>
 <Energy Type1="Top" Type2="Center">35</Energy>

 <Energy Type1="Bottom" Type2="Bottom">10</Energy>
 <Energy Type1="Bottom" Type2="Side1">25</Energy>
 <Energy Type1="Bottom" Type2="Side2">25</Energy>
 <Energy Type1="Bottom" Type2="Center">35</Energy>

 <Energy Type1="Side1" Type2="Side1">25</Energy>
 <Energy Type1="Side1" Type2="Center">25</Energy>
 <Energy Type1="Side2" Type2="Side2">25</Energy>
 <Energy Type1="Side2" Type2="Center">25</Energy>
 <Energy Type1="Side1" Type2="Side2">15</Energy>

 <Energy Type1="Center" Type2="Center">20</Energy>

 <NeighborOrder>2</NeighborOrder>
</Plugin>

and

<Plugin Name="ContactInternal">

 <Energy Type1="Base" Type2="Base">0</Energy>
 <Energy Type1="Base" Type2="Bottom">0</Energy>
 <Energy Type1="Base" Type2="Side1">0</Energy>
 <Energy Type1="Base" Type2="Side2">0</Energy>
 <Energy Type1="Base" Type2="Center">0</Energy>

 <Energy Type1="Top" Type2="Top">4</Energy>
 <Energy Type1="Top" Type2="Bottom">25</Energy>
 <Energy Type1="Top" Type2="Side1">22</Energy>
 <Energy Type1="Top" Type2="Side2">22</Energy>
 <Energy Type1="Top" Type2="Center">15</Energy>

 <Energy Type1="Bottom" Type2="Bottom">4</Energy>
 <Energy Type1="Bottom" Type2="Side1">15</Energy>
 <Energy Type1="Bottom" Type2="Side2">15</Energy>
 <Energy Type1="Bottom" Type2="Center">10</Energy>

 <Energy Type1="Side1" Type2="Side1">11</Energy>
 <Energy Type1="Side2" Type2="Side2">11</Energy>
 <Energy Type1="Side1" Type2="Side2">11</Energy>

 <Energy Type1="Side2" Type2="Center">10</Energy>
 <Energy Type1="Side1" Type2="Center">10</Energy>

 <Energy Type1="Center" Type2="Center">2</Energy>

 <NeighborOrder>2</NeighborOrder>
</Plugin>

Depending whether pixels for which we calculate contact energies belong
to the same cluster or not we will use internal or external contact
energies respectively.

 Connectivity Plugins

Connectivity Plugins

The “basic” Connectivity plugin works only in 2D and only on square
lattice and is used to ensure that cells are connected or in other
words to prevent separation of the cell into pieces. The detailed
algorithm for this plugin is described in Roeland Merks’ paper “Cell
elongation is a key to in-silico replication of in vitro
vasculogenesis and subsequent remodeling” Develo